32 research outputs found

    Towards new generation of neuro-implantable devices : engineering neuron/carbon nanotubes integrated functional units

    Get PDF
    2008/2009Le nanotecnologie sono un campo delle scienze che utilizza materiali e dispositivi ingegnerizzati aventi la più piccola organizzazione funzionale a livello di dimensioni nanometriche. Questo implica che nanodispositivi e nanomateriali possano interagire con i sistemi biologici a livello molecolare con un elevato grado di specificità. É largamente accettato che l’applicazione delle nanotecnologie nell’ambito delle neuroscienze abbia un forte potenziale (Silva, 2006). In questo contesto, i nanotubi di carbonio (CNT), un’innovativa forma di carbonio composta da strutture tubulari di grafite dalle dimensioni nanometriche dotate di buone proprietà di conduzione elettrica, si sono dimostrati promettenti candidati per sviluppare la tecnologia di dispositivi impiantabili in ambito biomedico. Diversi studi hanno dimostrato la biocompatibilità dei substrati di CNT per i neuroni in termini di adesione, crescita e differenziamento cellulare (riassunti in Sucapane et al., 2009). Al fine di aumentare la nostra conoscenza riguardo alle interazioni presenti in sistemi ibridi formati da CNT e neuroni, abbiamo caratterizzato l’attività di reti neuronali cresciuti su supporti di CNT attraverso la tecnica del patch clamp. Il nostro gruppo ha riportato che circuti neuronali cresciuti in vitro su substrati di CNT presentano un’aumentata attività sinaptica spontanea rispetto al controllo a fronte di comparabili proprietà base (proprietà passive di membrana, morfologia e densità dei neuroni) delle colture nelle due condizioni di crescita (Lovat et al., 2005). Si è quindi ipotizzato che tale aumentata attività spontanea potesse originare da una modificazione nel modo in cui i singoli neuroni generano il segnale elettrico. A tal fine, si sono monitorate variazioni nelle proprietà elettrogeniche di singoli neuroni, utilizzando un protocollo standard per caratterizzare l’integrazione di potenziali d’azione retropropaganti nei dendriti (Larkum et al., 1999). In configurazione current clamp, attraverso brevi iniezioni di corrente nel soma della cellula, abbiamo indotto una serie di regolari potenziali d’azione (PA) a varie frequenze nel neurone sotto registrazione, quindi abbiamo studiato la presenza di un’addizionale depolarizzazione somatica dopo l’ultimo PA del treno. Abbiamo osservato che neuroni di controllo mostrano nella maggioranza dei casi una iperpolarizzazione (AHP) del potenziale di membrana dopo l’ultimo PA del treno, mentre una depolarizzazione (ADP) è presente solo in una piccola quota di casi. In presenza di CNT, invece, l’ADP risulta essere l’evento predominante. L’ADP è inoltre abolita dall’applicazione di CoCl2, un bloccante non specifico dei canali calcio voltaggio dipendenti. Per di più, l’area dell’ADP può essere diminuita dall’applicazione di nifedipina (10 μM) e l’ulteriore coapplicazione di NiCl2 (50 μM) elimina totalmente l’ADP, suggerendo che sia i canali calcio voltaggio dipendenti ad alta soglia di attivazione, sia quelli a bassa soglia, siano coinvolti in questo processo (Cellot et al., 2009). Attraverso la microscopia elettronica a trasmissione (TEM) e, più recentemente, mediante quella a scansione (SEM) è stata messa in evidenza la presenza di discontinui punti di stretto contatto tra CNT e membrane neuronali: la nostra ipotesi è che tali strutture ibride siano in grado di favorire la retropropagazione dei PA nei dendriti distali. La maggiore eccitabilità a livello del singolo neurone, inoltre, potrebbe essere responsabile dell’incremento di attività spontanea della rete neuronale. Abbiamo quindi ulteriormente caratterizzato l’attività della rete neuronale attraverso registrazioni da coppie di neuroni, dove il neurone presinaptico veniva stimolato ad avere treni di potenziali d’azione a 20 Hz in configurazione current clamp e simultaneamente il neurone postsinaptico era monitorato in configurazione voltage clamp per vedere la presenza o l’assenza di una risposta sinaptica. I nostri esperimenti indicano che la probabilità di trovare connessioni monosinaptiche gabaergiche tra neuroni è aumentata in presenza di CNT (56% vs 40% in controllo). Inoltre, è stato rilevato un ulteriore effetto dei CNT sulla plasticità a breve termine delle sinapsi: nelle condizioni di controllo, treni di potenziali d’azione nella cellula presinaptica evocano nella cellula postsinaptica nel 90% dei casi una chiara depressione nell’ampiezza di consecutivi ePSCs, mentre solo in meno del 10% è possibile rilevare una facilitazione. Al contrario, in presenza di CNT, nel 39% delle coppie, il neurone postsinaptico risponde in modo chiaramente facilitativo. Nelle più recenti serie di esperimenti, abbiamo voluto indagare più approfonditamente l’origine di questa modificazione in termini di plasticità sinaptica; a tal fine, abbiamo trattato neuroni in controllo e su CNT con tetrodotossina 1 µM per 5 giorni, al fine di bloccare completamente l’attività elettrica della rete neuronale, e abbiamo compiuto delle registrazioni da coppie di neuroni. Mentre la risposta prevalentemente di depressione dei controlli non è modificata da tale trattamento, neuroni cresciuti su substrati di cnt in condizioni di blocco dell’attività elettrica non presentano più sinapsi con caratteristiche di facilitazione, ma hanno un comportamento simile ai contolli. Questi risultati indicano che la facilitazione è una proprietà tipica di sinapsi attive sviluppatesi in presenza di CNT.XXII Ciclo198

    Thin graphene oxide nanoflakes modulate glutamatergic synapses in the amygdala cultured circuits: exploiting synaptic approaches to anxiety disorders

    Get PDF
    Anxiety disorders (ADs) are nervous system maladies involving changes in the amygdala synaptic circuitry, such as an upregulation of excitatory neurotransmission at glutamatergic synapses. In the field of nanotechnology, thin graphene oxide flakes with nanoscale lateral size (s-GO) have shown outstanding promise for the manipulation of excitatory neuronal transmission with high temporal and spatial precision, thus they were considered as ideal candidates for modulating amygdalar glutamatergic transmission. Here, we validated an in vitro model of amygdala circuitry as a screening tool to target synapses, towards development of future ADs treatments. After one week in vitro, dissociated amygdalar neurons reconnected forming functional networks, whose development recapitulated that of the tissue of origin. When acutely applied to these cultures, s-GO flakes induced a selective modification of excitatory activity. This type of interaction between s-GO and amygdalar neurons may form the basis for the exploitation of alternative approaches in the treatment of ADs

    BDNF impact on synaptic dynamics: extra or intracellular long-term release differently regulates cultured hippocampal synapses

    Get PDF
    Brain Derived Neurotrophic Factor (BDNF) signalling contributes to the formation, maturation and plasticity of Central Nervous System (CNS) synapses. Acute exposure of cultured brain circuits to BDNF leads to up-regulation of glutamatergic neuro-transmission, by the accurate tuning of pre and post synaptic features, leading to structural and functional synaptic changes. Chronic BDNF treatment has been comparatively less investigated, besides it may represent a therapeutic option to obtain rescue of post-injury alterations of synaptic networks. In this study we used a paradigm of BDNF long-term (4 days) incubation to assess in hippocampal post-natal neurons in culture, the ability of such a treatment to alter synapses. By patch clamp recordings we describe the augmented function of excitatory neurotransmission and we further explore by live imaging the presynaptic changes brought about by long-term BDNF. In our study, exogenous long-term BDNF exposure of post-natal neurons did not affect inhibitory neurotransmission. We further compare, by genetic manipulations of cultured neurons and BDNF release, intracellular overexpression of this neurotrophin at the same developmental age. We describe for the first-time differences in synaptic modulation by BDNF with respect to exogenous or intracellular release paradigms. Such a finding holds the potential of influencing the design of future therapeutic strategies

    Premature changes in neuronal excitability account for hippocampal network impairment and autistic-like behavior in neonatal BTBR T+tf/J mice

    Get PDF
    Coherent network oscillations (GDPs), generated in the immature hippocampus by the synergistic action of GABA and glutamate, both depolarizing and excitatory, play a key role in the construction of neuronal circuits. In particular, GDPs-associated calcium transients act as coincident detectors for enhancing synaptic efficacy at emerging GABAergic and glutamatergic synapses. Here, we show that, immediately after birth, in the CA3 hippocampal region of the BTBR T+tf/J mouse, an animal model of idiopathic autism, GDPs are severely impaired. This effect was associated with an increased GABAergic neurotransmission and a reduced neuronal excitability. In spite its depolarizing action on CA3 pyramidal cells (in single channel experiments EGABA was positive to Em), GABA exerted at the network level an inhibitory effect as demonstrated by isoguvacine-induced reduction of neuronal firing. We implemented a computational model in which experimental findings could be interpreted as the result of two competing effects: a reduction of the intrinsic excitability of CA3 principal cells and a reduction of the shunting activity in GABAergic interneurons projecting to principal cells. It is therefore likely that premature changes in neuronal excitability within selective hippocampal circuits of BTBR mice lead to GDPs dysfunction and behavioral deficits reminiscent of those found in autistic patients

    MoS2 2D materials induce spinal cord neuroinflammation and neurotoxicity affecting locomotor performance in zebrafish

    Get PDF
    MoS2 nanosheets belong to an emerging family of nanomaterials named bidimensional transition metal dichalcogenides (2D TMDCs). The use of such promising materials, featuring outstanding chemical and physical properties, is expected to increase in several fields of science and technology, with an enhanced risk of environmental dispersion and associated wildlife and human exposures. In this framework, the assessment of MoS2 nanosheets toxicity is instrumental to safe industrial developments. Currently, the impact of the nanomaterial on the nervous tissue is unexplored. In this work, we use as in vivo experimental model the early-stage zebrafish, to investigate whether mechano-chemically exfoliated MoS2 nanosheets reach and affect, when added in the behavioral ambient, the nervous system. By high throughput screening of zebrafish larvae locomotor behavioral changes upon exposure to MoS2 nanosheets and whole organism live imaging of spinal neuronal and glial cell calcium activity, we report that sub-acute and prolonged ambient exposures to MoS2 nanosheets elicit locomotor abnormalities, dependent on dose and observation time. While 25 μg/mL concentration treatments exerted transient effects, 50 μg/mL ones induced long-lasting changes, correlated to neuroinflammation-driven alterations in the spinal cord, such as astrogliosis, glial intracellular calcium dysregulation, neuronal hyperactivity and motor axons retraction. By combining integrated technological approaches to zebrafish, we described that MoS2 2D nanomaterials can reach, upon water (i.e. ambient) exposure, the nervous system of larvae, resulting in a direct neurological damage

    Tuning the Reduction of Graphene Oxide Nanoflakes Differently Affects Neuronal Networks in the Zebrafish

    Get PDF
    The increasing engineering of biomedical devices and the design of drug-delivery platforms enriched by graphene-based components demand careful investigations of the impact of graphene-related materials (GRMs) on the nervous system. In addition, the enhanced diffusion of GRM-based products and technologies that might favor the dispersion in the environment of GRMs nanoparticles urgently requires the potential neurotoxicity of these compounds to be addressed. One of the challenges in providing definite evidence supporting the harmful or safe use of GRMs is addressing the variety of this family of materials, with GRMs differing for size and chemistry. Such a diversity impairs reaching a unique and predictive picture of the effects of GRMs on the nervous system. Here, by exploiting the thermal reduction of graphene oxide nanoflakes (GO) to generate materials with different oxygen/carbon ratios, we used a high-throughput analysis of early-stage zebrafish locomotor behavior to investigate if modifications of a specific GRM chemical property influenced how these nanomaterials affect vertebrate sensory-motor neurophysiology—exposing zebrafish to GO downregulated their swimming performance. Conversely, reduced GO (rGO) treatments boosted locomotor activity. We concluded that the tuning of single GRM chemical properties is sufficient to produce differential effects on nervous system physiology, likely interfering with different signaling pathways

    PEDOT:PSS interfaces support the development of neuronal synaptic networks with reduced neuroglia response in vitro

    Get PDF
    The design of electrodes based on conductive polymers in brain-machine interface technology offers the opportunity to exploit variably manufactured materials to reduce gliosis, indeed the most common brain response to chronically implanted neural electrodes. In fact, the use of conductive polymers, finely tailored in their physical-chemical properties, might result in electrodes with improved adaptability to the brain tissue and increased charge-transfer efficiency. Here we interfaced poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) doped with different amounts of ethylene glycol (EG) with rat hippocampal primary cultures grown for 3 weeks on these synthetic substrates. We used immunofluorescence and scanning electron microscopy combined to single cell electrophysiology to assess the biocompatibility of PEDOT:PSS in terms of neuronal growth and synapse formation. We investigated neuronal morphology, density and electrical activity. We reported the novel observation that opposite to neurons, glial cell density was progressively reduced, hinting at the ability of this material to down regulate glial reaction. Thus PEDOT:PSS is an attractive candidate for the design of new implantable electrodes, controlling the extent of glial reactivity without affecting neuronal viability and function

    Nanomedicine and graphene-based materials: advanced technologies for potential treatments of diseases in the developing nervous system

    No full text
    Abstract The interest in graphene-based nanomaterials (GBNs) application in nanomedicine, in particular in neurology, steadily increased in the last decades. GBNs peculiar physical–chemical properties allow the design of innovative therapeutic tools able to manipulate biological structures with subcellular resolution. In this review, we report GBNs applications to the central nervous system (CNS) when these nanomaterials are engineered as potential therapeutics to treat brain pathologies, with a focus on those of the pediatric age. We revise the state-of-the art studies addressing the impact of GBNs in the CNS, showing that the design of GBNs with different dimensions and chemical compositions or the use of specific administration routes and doses can limit unwanted side effects, exploiting GBNs efficacy in therapeutic approaches. These features favor the development of GBNs-based multifunctional devices that may find applications in the field of precision medicine for the treatment of disorders in the developing CNS. In this framework, we address the suitability of GBNs to become successful therapeutic tools, such as drug nano-delivery vectors when being chemically decorated with pharmaceutical agents and/or other molecules to obtain a high specific targeting of the diseased area and to achieve a controlled release of active molecules. Impact The translational potential of graphene-based nanomaterials (GBNs) can be used for the design of novel therapeutic approaches to treat pathologies affecting the brain with a focus on the pediatric age. GBNs can be chemically decorated with pharmaceutical agents and molecules to obtain a highly specific targeting of the diseased site and a controlled drug release. The type of GBNs, the selected functionalization, the dose, and the way of administration are factors that should be considered to potentiate the therapeutic efficacy of GBNs, limiting possible side effects. GBNs-based multifunctional devices might find applications in the precision medicine and theranostics fields. </jats:sec

    Graphene Oxide Nanosheets Hamper Glutamate Mediated Excitotoxicity and Protect Neuronal Survival In An In vitro Stroke Model

    Get PDF
    Small graphene oxide (s-GO) nanosheets reversibly downregulate central nervous system (CNS) excitatory synapses, with potential developments as future therapeutic tools to treat neuro-disorders characterized by altered glutamatergic transmission. Excitotoxicity, namely cell death triggered by exceeding ambient glutamate fueling over-activation of excitatory synapses, is a pathogenic mechanism shared by several neural diseases, from ischemic stroke to neurodegenerative disorders. In this work, CNS cultures were exposed to oxygen-glucose deprivation (OGD) to mimic ischemic stroke in vitro, and it is show that the delivery of s-GO following OGD, during the endogenous build-up of secondary damage and excitotoxicity, improved neuronal survival. In a different paradigm, excitotoxicity cell damage was reproduced through exogenous glutamate application, and s-GO co-treatment protected neuronal integrity, potentially by directly downregulating the synaptic over-activation brought about by exogenous glutamate. This proof-of-concept study suggests that s-GO may find novel applications in therapeutic developments for treating excitotoxicity-driven neural cell death

    Smell Rehabilitation: Recovery of Olfactory Perception and Discrimination in Twelve Cases of Total Laryngectomy

    Get PDF
    Objective: Total laryngectomy (TL) is a surgical practice widely used in the therapy of advanced laryngeal cancer. Since TL provokes loss of both speech and smell functions, the aim of the present work was to evaluate the effect of a smell rehabilitation cycle in twelve total laryngectomized patients. Methods: Twelve laryngectomized patients were enrolled to undergo a smell rehabilitation cycle in addition to previously performed speech recovery. For this aim the Nasal Airflow-Inducing Maneuver (NAIM) was employed to allow air to reach the nasal cavities again. Both olfactory perception and olfactory discrimination of odorous substances were evaluated by numeric scores to assess the modifications induced by the smell rehabilitative intervention on the recovery of the olfactory functions. Results: Smell capability, as regards the olfactory perception, ameliorated in the group of patients already after the first week of the smell rehabilitation cycle. Subsequently also the olfactory discrimination was evaluated, both at the end of the rehabilitation cycle (day 28) and after a period of twelve months, and we observeda significant amelioration at the end of the rehabilitative intervention that was essentially maintained even after one year although without a constant assistance performed by speech therapists. Conclusions: Smell rehabilitation should be always considered after TL in addition to speech restoration. Recovered smell perception and discrimination could enhance the related taste sensitivity, therefore restored olfactory functions could also ameliorate significantly the quality of life in total laryngectomized patients
    corecore