720 research outputs found

    Superpartner Solutions of a BPS Monopole in Noncommutative Space

    Get PDF
    We construct U(2) BPS monopole superpartner solutions in N=2 non-commutative super Yang-Mills theory. Calculation to the second order in the noncommutative parameter θ\theta shows that there is no electric quadrupole moment that is expected from the magnetic dipole structure of noncommtative U(2) monopole. This might give an example of the nature of how supersymmetry works not changing between the commutative and noncommutative theories.Comment: 8 page

    Gauge Field Fluctuations and First-Order Phase Transition in Color Superconductivity

    Full text link
    We study the gauge field fluctuations in dense quark matter and determine the temperature of the induced first-order phase transition to the color-superconducting phase in weak coupling. We find that the local approximation of the coupling between the gauge potential and the order parameter, employed in the Ginzburg-Landau theory, has to be modified by restoring the full momentum dependence of the polarization function of gluons in the superconducting phase.Comment: 5 pages, 1 figure, Revtex, we have modified our conclusions for the metallic superconducto

    State–of–the–art report on nonlinear representation of sources and channels

    Get PDF
    This report consists of two complementary parts, related to the modeling of two important sources of nonlinearities in a communications system. In the first part, an overview of important past work related to the estimation, compression and processing of sparse data through the use of nonlinear models is provided. In the second part, the current state of the art on the representation of wireless channels in the presence of nonlinearities is summarized. In addition to the characteristics of the nonlinear wireless fading channel, some information is also provided on recent approaches to the sparse representation of such channels

    Higgs Mechanism in String Theory

    Full text link
    In first-quantized string theory, spacetime symmetries are described by inner automorphisms of the underlying conformal field theory. In this paper we use this approach to illustrate the Higgs effect in string theory. We consider string propagation on M^{24,1} \times S^1, where the circle has radius R, and study SU(2) symmetry breaking as R moves away from its critical value. We find a gauge-covariant equation of motion for the broken-symmetry gauge bosons and the would-be Goldstone bosons. We show that the Goldstone bosons can be eliminated by an appropriate gauge transformation. In this unitary gauge, the Goldstone bosons become the longitudinal components of massive gauge bosons.Comment: 12 pages, Te

    Relativistic Stars in Randall-Sundrum Gravity

    Get PDF
    The non-linear behaviour of Randall-Sundrum gravity with one brane is examined. Due to the non-compact extra dimension, the perturbation spectrum has no mass gap, and the long wavelength effective theory is only understood perturbatively. The full 5-dimensional Einstein equations are solved numerically for static, spherically symmetric matter localized on the brane, yielding regular geometries in the bulk with axial symmetry. An elliptic relaxation method is used, allowing both the brane and asymptotic radiation boundary conditions to be simultaneously imposed. The same data that specifies stars in 4-dimensional gravity, uniquely constructs a 5-dimensional solution. The algorithm performs best for small stars (radius less than the AdS length) yielding highly non-linear solutions. An upper mass limit is observed for these small stars, and the geometry shows no global pathologies. The geometric perturbation is shown to remain localized near the brane at high densities, the confinement interestingly increasing for both small and large stars as the upper mass limit is approached. Furthermore, the static spatial sections are found to be approximately conformal to those of AdS. We show that the intrinsic geometry of large stars, with radius several times the AdS length, is described by 4-dimensional General Relativity far past the perturbative regime. This indicates that the non-linear long wavelength effective action remains local, even though the perturbation spectrum has no mass gap. The implication is that Randall-Sundrum gravity, with localized brane matter, reproduces relativistic astrophysical solutions, such as neutron stars and massive black holes, consistent with observation.Comment: 57 pages, 26 (colour) figures; minor typos corrected, references added and introduction condense

    Absence of the London limit for the first-order phase transition to a color superconductor

    Full text link
    We study the effects of gauge-field fluctuations on the free energy of a homogeneous color superconductor in the color-flavor-locked (CFL) phase. Gluonic fluctuations induce a strong first-order phase transition, in contrast to electronic superconductors where this transition is weakly first order. The critical temperature for this transition is larger than the one corresponding to the diquark pairing instability. The physical reason is that the gluonic Meissner masses suppress long-wavelength fluctuations as compared to the normal conducting phase where gluons are massless, which stabilizes the superconducting phase. In weak coupling, we analytically compute the temperatures associated with the limits of metastability of the normal and superconducting phases, as well as the latent heat associated with the first-order phase transition. We then extrapolate our results to intermediate densities and numerically evaluate the temperature of the fluctuation-induced first-order phase transition, as well as the discontinuity of the diquark condensate at the critical point. We find that the London limit of magnetic interactions is absent in color superconductivity.Comment: 14 pages, 5 figure

    See-Saw Modification of Gravity

    Get PDF
    We discuss a model in which the fundamental scale of gravity is restricted to 10^{-3} eV. An observable modification of gravity occurs simultaneously at the Hubble distance and at around 0.1 mm. These predictions can be tested both by the table-top experiments and by cosmological measurements. The model is formulated as a brane-world theory embedded in a space with two or more infinite-volume extra dimensions. Gravity on the brane reproduces the four-dimensional laws at observable distances but turns to the high-dimensional behavior at larger scales. To determine the crossover distance we smooth out the singularities in the Green's functions by taking into account softening of the graviton propagator due to the high-dimensional operators that are suppressed by the fundamental scale. We find that irrespective of the precise nature of microscopic gravity the ultraviolet and infrared scales of gravity-modification are rigidly correlated. This fixes the fundamental scale of gravity at 10^{-3} eV. The result persists for nonzero thickness branes.Comment: 24 LaTex pages; v2: comments added, typos correcte

    An Infinite Dimensional Symmetry Algebra in String Theory

    Full text link
    Symmetry transformations of the space-time fields of string theory are generated by certain similarity transformations of the stress-tensor of the associated conformal field theories. This observation is complicated by the fact that, as we explain, many of the operators we habitually use in string theory (such as vertices and currents) have ill-defined commutators. However, we identify an infinite-dimensional subalgebra whose commutators are not singular, and explicitly calculate its structure constants. This constitutes a subalgebra of the gauge symmetry of string theory, although it may act on auxiliary as well as propagating fields. We term this object a {\it weighted tensor algebra}, and, while it appears to be a distant cousin of the WW-algebras, it has not, to our knowledge, appeared in the literature before.Comment: 14 pages, Plain TeX, report RU93-8, CTP-TAMU-2/94, CERN-TH.7022/9

    Dimension reduction for systems with slow relaxation

    Full text link
    We develop reduced, stochastic models for high dimensional, dissipative dynamical systems that relax very slowly to equilibrium and can encode long term memory. We present a variety of empirical and first principles approaches for model reduction, and build a mathematical framework for analyzing the reduced models. We introduce the notions of universal and asymptotic filters to characterize `optimal' model reductions for sloppy linear models. We illustrate our methods by applying them to the practically important problem of modeling evaporation in oil spills.Comment: 48 Pages, 13 figures. Paper dedicated to the memory of Leo Kadanof
    corecore