38,152 research outputs found
Peer-to-peer:is deviant behavior the norm on P2P file-sharing networks?
P2P file-sharing networks such as Kazaa, eDonkey, and Limewire boast millions of users. Because of scalability concerns and legal issues, such networks are moving away from the semicentralized approach that Napster typifies toward more scalable and anonymous decentralized P2P architectures. Because they lack any central authority, these networks provide a new, interesting context for the expression of human social behavior. However, the activities of P2P community members are sometimes at odds with what real-world authorities consider acceptable. One example is the use of P2P networks to distribute illegal pornography. To gauge the form and extent of P2P-based sharing of illegal pornography, we analyzed pornography-related resource-discovery traffic in the Gnutella P2P network. We found that a small yet significant proportion of Gnutella activity relates to illegal pornography: for example, 1.6 percent of searches and 2.4 percent of responses are for this type of material. But does this imply that such activity is widespread in the file-sharing population? On the contrary, our results show that a small yet particularly active subcommunity of users searches for and distributes illegal pornography, but it isn't a behavioral norm
Single-level resonance parameters fit nuclear cross-sections
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total
Increasing trap stiffness with position clamping in holographic optical tweezers
We present a holographic optical tweezers system capable of position clamping multiple particles. Moving an optical trap in response to the trapped object's motion is a powerful technique for optical control and force measurement. We have now realised this experimentally using a Boulder Nonlinear Systems Spatial Light Modulator (SLM) with a refresh rate of 203Hz. We obtain a reduction of 44% in the variance of the bead's position, corresponding to an increase in effective trap stiffness of 77%. This reduction relies on the generation of holograms at high speed. We present software capable of calculating holograms in under 1ms using a graphics processor unit. © 2009 Optical Society of America
Assembly and force measurement with SPM-like probes in holographic optical tweezers
We report a high fidelity tomographic reconstruction of the quantum state of photon pairs generated by parametric down-conversion with orbital angular momentum (OAM) entanglement. Our tomography method allows us to estimate an upper and lower bound for the entanglement between the down-converted photons. We investigate the two-dimensional state subspace defined by the OAM states ±ℓ and superpositions thereof, with ℓ=1, 2, ..., 30. We find that the reconstructed density matrix, even for OAMs up to around ℓ=20, is close to that of a maximally entangled Bell state with a fidelity in the range between F=0.979 and F=0.814. This demonstrates that, although the single count-rate diminishes with increasing ℓ, entanglement persists in a large dimensional state space
The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations
The hot Jupiter HD189733b is the most extensively observed exoplanet. Its
atmosphere has been detected and characterised in transmission and eclipse
spectroscopy, and its phase curve measured at several wavelengths. This paper
brings together results of our campaign to obtain the complete transmission
spectrum of the atmosphere of this planet from UV to IR with HST, using STIS,
ACS and WFC3. We provide a new tabulation of the transmission spectrum across
the entire visible and IR range. The radius ratio in each wavelength band was
rederived to ensure a consistent treatment of the bulk transit parameters and
stellar limb-darkening. Special care was taken to correct for, and derive
realistic estimates of the uncertainties due to, both occulted and unocculted
star spots. The combined spectrum is very different from the predictions of
cloud-free models: it is dominated by Rayleigh scattering over the whole
visible and near infrared range, the only detected features being narrow Na and
K lines. We interpret this as the signature of a haze of condensate grains
extending over at least 5 scale heights. We show that a dust-dominated
atmosphere could also explain several puzzling features of the emission
spectrum and phase curves, including the large amplitude of the phase curve at
3.6um, the small hot-spot longitude shift and the hot mid-infrared emission
spectrum. We discuss possible compositions and derive some first-order
estimates for the properties of the putative condensate haze/clouds. We finish
by speculating that the dichotomy between the two observationally defined
classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the
prototypes, might not be whether they possess a temperature inversion, but
whether they are clear or dusty. We also consider the possibility of a
continuum of cloud properties between hot Jupiters, young Jupiters and L-type
brown dwarfs.Comment: Accepted for publication in MNRAS. 31 pages, 19 figures, 8 table
The Greek financial crisis: growing imbalances and sovereign spreads
We discuss the origins of the Greek financial crisis as manifested in the growing fiscal and current-account deficits since euro-area entry in 2001. We then provide an investigation of spreads on Greek relative to German long-term government debt. Using monthly data over the period 2000 to 2010, we estimate a cointegrating relationship between spreads and their long-term fundamental determinants, and compare the spreads predicted by this estimated relationship with actual spreads. We find periods of both undershooting and overshooting of spreads compared to what is predicted by the economic fundamentals.Greek financial crisis; sovereign spreads
Preparation of microscopic cross sections of U235 for reactor calculations
Preparation of microscopic cross section of uranium 235 for high temperature reactor calculation
Mirror matter admixtures and isospin breaking in the \Delta I=1/2 rule in \Omega^- two body non-leptonic decays
We discuss a description of \Omega^- two body non-leptonic decays based on
possible, albeit tiny, admixtures of mirror matter in ordinary hadrons. The
\Delta I=1/2 rule enhancement is obtained as a result of isospin symmetry and,
more importantly, the rather large observed deviations from this rule result
from small isospin breaking. This analysis lends support to the possibility
that the enhancement phenomenon observed in low energy weak interactions may be
systematically described by mirror matter admixtures in ordinary hadrons.Comment: Changed conten
FUSE Observations of Outflowing OVI in the Dwarf Starburst Galaxy NGC1705
We report FUSE far-UV spectroscopy of the prototypical dwarf starburst galaxy
NGC 1705. These data allow us for the first time to probe the coronal-phase gas
(T = 10E5 to 10E6 K) that may dominate the radiative cooling of the
supernova-heated ISM and thereby determine the dynamical evolution of
starburst-driven outflows. We detect a broad (100 km/s) and blueshifted (by 80
km/s) OVI absorption-line arising in the previously-known galactic outflow. The
properties of the OVI absorption are inconsistent with the standard superbubble
model in which this gas arises in a conductive interface inside the outer
shell. We show that the superbubble in NGC 1705 is blowing out of the galaxy
ISM. During blow-out, coronal-phase gas can be created by hydrodynamical mixing
as hot gas rushes out through fissures in the fragmenting shell of cool gas. As
the coronal gas cools radiatively, it can naturally produce the observed OVI
column density and outflow speed. The OVI data show that the cooling rate in
the coronal-phase gas is less than about 10% of the supernova heating rate.
Since the X-ray luminosity from hotter gas is even smaller, we conclude that
radiative losses are insignificant. The outflow should be able to vent its
metals and kinetic energy out of the galaxy. This process has potentially
important implications for the evolution of dwarf galaxies and the IGM.Comment: ApJ (in press
Observations of the structure and evolution of solar flares with a soft X-ray telescope
Soft X ray flare events were observed with the S-056 X-ray telescope that was part of the ATM complement of instruments aboard SKYLAB. Analyses of these data are reported. The observations are summarized and a detailed discussion of the X-ray flare structures is presented. The data indicated that soft X-ray emitted by a flare come primarily from an intense well-defined core surrounded by a region of fainter, more diffuse emission. An analysis of flare evolution indicates evidence for preliminary heating and energy release prior to the main phase of the flare. Core features are found to be remarkably stable and retain their shape throughout a flare. Most changes in the overall configuration seem to be result of the appearance, disappearance or change in brightness of individual features, rather than the restructuring or reorientation of these features. Brief comparisons with several theories are presented
- …
