418 research outputs found

    Stochastically perturbed bred vectors in multi-scale systems

    Full text link
    The breeding method is a computationally cheap way to generate flow-adapted ensembles to be used in probabilistic forecasts. Its main disadvantage is that the ensemble may lack diversity and collapse to a low-dimensional subspace. To still benefit from the breeding method's simplicity and its low computational cost, approaches are needed to increase the diversity of these bred vector (BV) ensembles. We present here such a method tailored for multi-scale systems. We describe how to judiciously introduce stochastic perturbations to the standard bred vectors leading to stochastically perturbed bred vectors. The increased diversity leads to a better forecast skill as measured by the RMS error, as well as to more reliable ensembles quantified by the error-spread relationship, the continuous ranked probability score and reliability diagrams. Our approach is dynamically informed and in effect generates random draws from the fast equilibrium measure conditioned on the slow variables. We illustrate the advantage of stochastically perturbed bred vectors over standard BVs in numerical simulations of a multi-scale Lorenz 96 model.Comment: accepted for publication in Q.J.R. Meteorolog. So

    How wearable sensors have been utilised to evaluate frailty in older adults: a systematic review

    Get PDF
    Abstract Background Globally the population of older adults is increasing. It is estimated that by 2050 the number of adults over the age of 60 will represent over 21% of the world’s population. Frailty is a clinical condition associated with ageing resulting in an increase in adverse outcomes. It is considered the greatest challenge facing an ageing population affecting an estimated 16% of community-dwelling populations worldwide. Aim The aim of this systematic review is to explore how wearable sensors have been used to assess frailty in older adults. Method Electronic databases Medline, Science Direct, Scopus, and CINAHL were systematically searched March 2020 and November 2020. A search constraint of articles published in English, between January 2010 and November 2020 was applied. Papers included were primary observational studies involving; older adults aged > 60 years, used a wearable sensor to provide quantitative measurements of physical activity (PA) or mobility and a measure of frailty. Studies were excluded if they used non-wearable sensors for outcome measurement or outlined an algorithm or application development exclusively. The methodological quality of the selected studies was assessed using the Appraisal Tool for Cross-sectional Studies (AXIS). Results Twenty-nine studies examining the use of wearable sensors to assess and discriminate between stages of frailty in older adults were included. Thirteen different body-worn sensors were used in eight different body-locations. Participants were community-dwelling older adults. Studies were performed in home, laboratory or hospital settings. Postural transitions, number of steps, percentage of time in PA and intensity of PA together were the most frequently measured parameters followed closely by gait speed. All but one study demonstrated an association between PA and level of frailty. All reports of gait speed indicate correlation with frailty. Conclusions Wearable sensors have been successfully used to evaluate frailty in older adults. Further research is needed to identify a feasible, user-friendly device and body-location that can be used to identify signs of pre-frailty in community-dwelling older adults. This would facilitate early identification and targeted intervention to reduce the burden of frailty in an ageing population

    Measurement of Heart Rate Using the Withings ScanWatch Device during Free-living Activities : Validation Study

    Get PDF
    Funding Information: This research is part of the Eastern Corridor Medical Engineering (ECME) project, which has been funded by European Union’s INTERREG VA programme, managed by the Special EU Programmes Body (SEUPB).Peer reviewedPublisher PD

    Biofeedback in rehabilitation

    Get PDF
    This paper reviews the literature relating to the biofeedback used in physical rehabilitation. The biofeedback methods used in rehabilitation are based on biomechanical measurements and measurements of the physiological systems of the body. The physiological systems of the body which can be measured to provide biofeedback are the neuromuscular system, the respiratory system and the cardiovascular system. Neuromuscular biofeedback methods include electromyography (EMG) biofeedback and real-time ultrasound imaging (RTUS) biofeedback. EMG biofeedback is the most widely investigated method of biofeedback and appears to be effective in the treatment of many musculoskeletal conditions and in post cardiovascular accident (CVA) rehabilitation. RTUS biofeedback has been demonstrated effective in the treatment of low back pain (LBP) and pelvic floor muscle dysfunction. Cardiovascular biofeedback methods have been shown to be effective in the treatment of a number of health conditions such as hypertension, heart failure, asthma, fibromyalgia and even psychological disorders however a systematic review in this field has yet to be conducted. Similarly, the number of large scale studies examining the use of respiratory biofeedback in rehabilitation is limited. Measurements of movement, postural control and force output can be made using a number of different devices and used to deliver biomechanical biofeedback. Inertial based sensing biofeedback is the most widely researched biomechanical biofeedback method, with a number of studies showing it to be effective in improving measures of balance in a number of populations. Other types of biomechanical biofeedback include force plate systems, electrogoniometry, pressure biofeedback and camera based systems however the evidence for these is limited. Biofeedback is generally delivered using visual displays, acoustic or haptic signals, however more recently virtual reality (VR) or exergaming technology have been used as biofeedback signals. VR and exergaming technology have been primarily investigated in post-CVA rehabilitation, however, more recent work has shown this type of biofeedback to be effective in improving exercise technique in musculoskeletal populations. While a number of studies in this area have been conducted, further large scale studies and reviews investigating different biofeedback applications in different clinical populations are required

    Measurement of heart rate using the polar OH1 and fitbit charge 3 wearable devices in healthy adults during light, moderate, vigorous, and sprint-based exercise : Validation study

    Get PDF
    Funding Information: The authors would like to thank all participants who volunteered to participate in this study. DM, OG, DC and IM are supported by the European Union’s INTERREG VA Programme, managed by the Special European Union Programmes Body. DC is also supported by a grant from Highlands and Islands Enterprise (HMS 9353763). KH is partly funded by a grant from Highlands and Islands Enterprise (HMS 9353763) and partly funded by Inverness and Highland City-Region Deal.Peer reviewe

    Vulnerability of human settlements to flood risk in the core area of Ibadan metropolis, Nigeria

    Get PDF
    Flood disasters continue to wreak havoc on the lives of millions of people worldwide, causing death and massive economic losses. In most African cities, residents and their assets are among the most vulnerable to flood risks in the world. The nature and scale of this urban risk are changing because of the dynamic patterns of land use, unplanned growth and impacts of climate change. Flood risk is the product of the flood hazards, the vulnerability and exposure of the people and their physical environment. In order to minimise flood disaster, there is an urgent need to understand, invest in flood disaster risk reduction for resilience and to enhance disaster preparedness for an effective response as articulated in the recent Sendai Framework for Disaster Risk Reduction. This research utilises a new proposed flood vulnerability assessment framework for flood risk in a traditional community in the heart of Ibadan metropolis, in the context of their households’ exposure, susceptibility and coping capacity through a well-designed questionnaire survey. The study uses descriptive and inferential statistics techniques to provide a detailed understanding of the vulnerability profiles of the community and the levels of residents’ preparedness to mitigate the flood risk. The results of the statistical analysis show that there is a significant relationship between residents’ flood awareness and having previous flood experience, but there is no significant association between their awareness of risk and the level of preparedness for flooding. To minimise exposure and vulnerability to flood risk, we advocate effective adaptation policies to achieve disaster risk reduction and resilience on flood risk rather than focusing merely on reactive measures after disaster strikes.https://doi.org/10.4102/jamba.v9i1.37

    Measurement of Heart Rate Using the Withings ScanWatch Device during Free-Living Activities: A Validation Study

    Get PDF
    Background: Wrist-worn devices that incorporate photoplethysmography (PPG) sensing represent an exciting means of measuring heart rate (HR). A number of studies have evaluated the accuracy of HR measurements produced by these devices in controlled laboratory environments. However, it is also important to establish the accuracy of measurements produced by these devices outside the laboratory, in real-world, consumer use conditions. Objective: This study sought to examine the accuracy of HR measurements produced by the Withings ScanWatch during free-living activities. Methods: A sample of convenience of 7 participants volunteered (3 male and 4 female; mean age 64, SD 10 years; mean height 164, SD 4 cm; mean weight 77, SD 16 kg) to take part in this real-world validation study. Participants were instructed to wear the ScanWatch for a 12-hour period on their nondominant wrist as they went about their day-to-day activities. A Polar H10 heart rate sensor was used as the criterion measure of HR. Participants used a study diary to document activities undertaken during the 12-hour study period. These activities were classified according to the 11 following domains: desk work, eat or drink, exercise, gardening, household activities, self-care, shopping, sitting, sleep, travel, and walking. Validity was assessed using the Bland-Altman analysis, concordance correlation coefficient (CCC), and mean absolute percentage error (MAPE). Results: Across all activity domains, the ScanWatch measured HR with MAPE values <10%, except for the shopping activity domain (MAPE=10.8%). The activity domains that were more sedentary in nature (eg, desk work, eat or drink, and sitting) produced the most accurate HR measurements with a small mean bias and MAPE values <5%. Moderate to strong correlations (CCC=0.526-0.783) were observed between devices for all activity domains, except during the walking activity domain, which demonstrated a weak correlation (CCC=0.164) between devices. Conclusions: The results of this study show that the ScanWatch measures HR with a degree of accuracy that is acceptable for general consumer use; however, it would not be suitable in circumstances where more accurate measurements of HR are required, such as in health care or in clinical trials. Overall, the ScanWatch was less accurate at measuring HR during ambulatory activities (eg, walking, gardening, and household activities) compared to more sedentary activities (eg, desk work, eat or drink, and sitting). Further larger-scale studies examining this device in different populations and during different activities are required
    corecore