1,384 research outputs found
Robotic Wireless Sensor Networks
In this chapter, we present a literature survey of an emerging, cutting-edge,
and multi-disciplinary field of research at the intersection of Robotics and
Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor
Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system
that aims to achieve certain sensing goals while meeting and maintaining
certain communication performance requirements, through cooperative control,
learning and adaptation. While both of the component areas, i.e., Robotics and
WSN, are very well-known and well-explored, there exist a whole set of new
opportunities and research directions at the intersection of these two fields
which are relatively or even completely unexplored. One such example would be
the use of a set of robotic routers to set up a temporary communication path
between a sender and a receiver that uses the controlled mobility to the
advantage of packet routing. We find that there exist only a limited number of
articles to be directly categorized as RWSN related works whereas there exist a
range of articles in the robotics and the WSN literature that are also relevant
to this new field of research. To connect the dots, we first identify the core
problems and research trends related to RWSN such as connectivity,
localization, routing, and robust flow of information. Next, we classify the
existing research on RWSN as well as the relevant state-of-the-arts from
robotics and WSN community according to the problems and trends identified in
the first step. Lastly, we analyze what is missing in the existing literature,
and identify topics that require more research attention in the future
Using self-organizing maps to investigate environmental factors regulating colony size and breeding success of the White Stork (Ciconia ciconia)
We studied variations in the size of breeding colonies and in breeding performance of White Storks Ciconia ciconia in 2006–2008 in north-east Algeria. Each colony site was characterized using 12 environmental variables describing the physical environment, land-cover categories, and human activities, and by three demographic parameters: the number of breeding pairs, the number of pairs with chicks, and the number of fledged chicks per pair. Generalized linear mixed models and the self-organizing map algorithm (SOM, neural network) were used to investigate effects of biotic, abiotic, and anthropogenic factors on demographic parameters and on their relationships. Numbers of breeding pairs and of pairs with chicks were affected by the same environmental factors, mainly anthropogenic, which differed from those affecting the number of fledged chicks per pair. Numbers of fledged chicks per pair was not affected by colony size or by the number of nests with chicks. The categorization of the environmental variables into natural and anthropogenic, in connection with demographic parameters, was relevant to detect factors explaining variation in colony size and breeding parameters. The SOM proved a relevant tool to help determine actual dynamics in White Stork colonies, and thus to support effective conservation decisions at a regional scale
Tetanus toxin Hc fragment induces the formation of ceramide platforms and protects neuronal cells against oxidative stress
Tetanus toxin (TeTx) is the protein, synthesized by the anaerobic bacteria Clostridium tetani, which causes tetanus disease. TeTx gains entry into target cells by means of its interaction with lipid rafts, which are membrane domains enriched in sphingomyelin and cholesterol. However, the exact mechanism of host membrane binding remains to be fully established. In the present study we used the recombinant carboxyl terminal fragment from TeTx (Hc-TeTx), the domain responsible for target neuron binding, showing that Hc-TeTx induces a moderate but rapid and sustained increase in the ceramide/sphingomyelin ratio in primary cultures of cerebellar granule neurons and in NGF-differentiated PC12 cells, as well as induces the formation of ceramide platforms in the plasma membrane. The mentioned increase is due to the promotion of neutral sphingomyelinase activity and not to the de novo synthesis, since GW4869, a specific neutral sphingomyelinase inhibitor, prevents neutral sphingomyelinase activity increase and formation of ceramide platforms. Moreover, neutral sphingomyelinase inhibition with GW4869 prevents Hc-TeTx-triggered signaling (Akt phosphorylation), as well as the protective effect of Hc-TeTx on PC12 cells subjected to oxidative stress, while siRNA directed against nSM2 prevents protection by Hc-TeTx of NSC-34 cells against oxidative insult. Finally, neutral sphingomyelinase activity seems not to be related with the internalization of Hc-TeTx into PC12 cells. Thus, the presented data shed light on the mechanisms triggered by TeTx after membrane binding, which could be related with the events leading to the neuroprotective action exerted by the Hc-TeTx fragment
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
We propose a scenario in which the supersymmetry breaking effect mediated by
an additional U(1)' is comparable with that of anomaly mediation. We argue that
such a scenario can be naturally realized in a large class of models. Combining
anomaly with Z' mediation allows us to solve the tachyonic slepton problem of
the former and avoid significant fine tuning in the latter. We focus on an
NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level
mu term, and present concrete models, which admit successful dynamical
electroweak symmetry breaking. Gaugino masses are somewhat lighter than the
scalar masses, and the third generation squarks are lighter than the first two.
In the specific class of models under consideration, the gluino is light since
it only receives a contribution from 2-loop anomaly mediation, and it decays
dominantly into third generation quarks. Gluino production leads to distinct
LHC signals and prospects of early discovery. In addition, there is a
relatively light Z', with mass in the range of several TeV. Discovering and
studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio
Competition and parasitism in the native White Clawed Crayfish Austropotamobius pallipes and the invasive Signal Crayfish Pacifastacus leniusculus in the UK
Many crayfish species have been introduced to novel habitats worldwide, often threatening
extinction of native species. Here we investigate competitive interactions and parasite infections in the
native Austropotamobius pallipes and the invasive Pacifastacus leniusculus from single and mixed species
populations in theUK. We found A. pallipes individuals to be significantly smaller in mixed compared to single
species populations; conversely P. leniusculus individuals were larger in mixed than in single species
populations. Our data provide no support for reproductive interference as a mechanism of competitive
displacement and instead suggest competitive exclusion of A. pallipes from refuges by P. leniusculus leading to
differential predation. We screened 52 P. leniusculus and 12 A. pallipes for microsporidian infection using
PCR. We present the first molecular confirmation of Thelohania contejeani in the native A. pallipes; in
addition, we provide the first evidence for T. contejeani in the invasive P. leniusculus. Three novel parasite
sequenceswere also isolated fromP. leniusculus with an overall prevalence of microsporidian infection of 38%
within this species; we discuss the identity of and the similarity between these three novel sequences. We also screened a subset of fifteen P. leniusculus and three A. pallipes for Aphanomyces astaci, the causative agent
of crayfish plague and for the protistan crayfish parasite Psorospermium haeckeli. We found no evidence for
infection by either agent in any of the crayfish screened. The high prevalence of microsporidian parasites and occurrence of shared T. contejeani infection lead us to propose that future studies should consider the impact of
these parasites on native and invasive host fitness and their potential effects upon the dynamics of native-invader
systems
Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine
The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3–8.9 μM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity–dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.Charles A. Dana Foundation. Brain and Immuno-ImagingRaymond and Beverley Sackler FoundationNational Institutes of Health (U.S.) (grant R01-DA28299)National Institutes of Health (U.S.) (grant DP2-OD2441)National Institutes of Health (U.S.) (grant R01-GM068664)Jacobs Institute for Molecular Engineering for Medicine. Jacobs Institute for Molecular Engineering for MedicineNational Institutes of Health (U.S.) (grant R01-DE013023
Risk of hyperkalemia in patients with moderate chronic kidney disease initiating angiotensin converting enzyme inhibitors or angiotensin receptor blockers : a randomized study
Background: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are renoprotective but both may increase serum potassium concentrations in patients with chronic kidney disease (CKD). The proportion of affected patients, the optimum follow-up period and whether there are differences between drugs in the development of this complication remain to be scertained. Methods: In a randomized, double-blind, phase IV, controlled, crossover study we recruited 30 patients with stage 3 CKD under restrictive eligibility criteria and strict dietary control. With the exception of withdrawals, each patient was treated with olmesartan and enalapril separately for 3 months each, with a 1-week wash-out period between treatments. Patients were clinically assessed on 10 occasions via measurements of serum and urine samples. We used the Cochran-Mantel-Haenszel statistics for comparison of categorical data between groups. Comparisons were also made using independent two-sample t-tests and Welch's t-test. Analysis of variance (ANOVA) was performed when necessary. We used either a Mann-Whitney or Kruskal-Wallis test if the distribution was not normal or the variance not homogeneous. Results: Enalapril and olmesartan increased serum potassium levels similarly (0.3 mmol/L and 0.24 mmol/L respectively). The percentage of patients presenting hyperkalemia higher than 5 mmol/L did not differ between treatments: 37% for olmesartan and 40% for enalapril. The mean e-GFR ranged 46.3 to 48.59 ml/mint/1.73 m2 in those treated with olmesartan and 46.8 to 48.3 ml/mint/1.73 m2 in those with enalapril and remained unchanged at the end of the study. The decreases in microalbuminuria were also similar (23% in olmesartan and 29% in enalapril patients) in the 4 weeks time point. The percentage of patients presenting hyperkalemia, even after a two month period, did not differ between treatments. There were no appreciable changes in sodium and potassium urinary excretion. Conclusions: Disturbances in potassium balance upon treatment with either olmesartan or enalapril are frequent and without differences between groups. The follow-up of these patients should include control of potassium levels, at least after the first week and the first and second month after initiating treatment
Regulation of Transcriptional Activators by DNA-Binding Domain Ubiquitination
Ubiquitin is a key component of the regulatory network that maintains gene expression in eukaryotes, yet the molecular mechanism(s) by which non-degradative ubiquitination modulates transcriptional activator (TA) function is unknown. Here endogenous p53, a stress-activated transcription factor required to maintain health, is stably monoubiquitinated, following pathway activation by IR or Nutlin-3 and localized to the nucleus where it becomes tightly associated with chromatin. Comparative structure–function analysis and in silico modelling demonstrate a direct role for DNA-binding domain (DBD) monoubiquitination in TA activation. When attached to the DBD of either p53, or a second TA IRF-1, ubiquitin is orientated towards, and makes contact with, the DNA. The contact is made between a predominantly cationic surface on ubiquitin and the anionic DNA. Our data demonstrate an unexpected role for ubiquitin in the mechanism of TA-activity enhancement and provides insight into a new level of transcriptional regulation
A prediction rule to stratify mortality risk of patients with pulmonary tuberculosis
Tuberculosis imposes high human and economic tolls, including in Europe. This study was conducted to develop a severity assessment tool for stratifying mortality risk in pulmonary tuberculosis (PTB) patients. A derivation cohort of 681 PTB cases was retrospectively reviewed to generate a model based on multiple logistic regression analysis of prognostic variables with 6-month mortality as the outcome measure. A clinical scoring system was developed and tested against a validation cohort of 103 patients. Five risk features were selected for the prediction model: hypoxemic respiratory failure (OR 4.7, 95% CI 2.8-7.9), age >= 50 years (OR 2.9, 95% CI 1.7-4.8), bilateral lung involvement (OR 2.5, 95% CI 1.44.4), >= 1 significant comorbidity-HIV infection, diabetes mellitus, liver failure or cirrhosis, congestive heart failure and chronic respiratory disease-(OR 2.3, 95% CI 1.3-3.8), and hemoglobin = 6) mortality risk. The mortality associated with each group was 2.9%, 22.9% and 53.9%, respectively. The model performed equally well in the validation cohort. We provide a new, easy-to-use clinical scoring system to identify PTB patients with high-mortality risk in settings with good healthcare access, helping clinicians to decide which patients are in need of closer medical care during treatment.This work was supported by Fundacao Amelia de Mello/Jose de Mello Saude and Sociedade Portuguesa de Pneumologia (SPP). This work was developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NSO is a FCT (Fundacao para a Ciencia e Tecnologia) investigator. MS is an Associate FCT Investigator. The fundershad no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
- …
