822 research outputs found
Quantifying Cross-scatter Contamination in Biplane Fluoroscopy Motion Analysis Systems
Biplane fluoroscopy is used for dynamic in vivo three-dimensional motion analysis of various joints of the body. Cross-scatter between the two fluoroscopy systems may limit tracking accuracy. This study measured the magnitude and effects of cross-scatter in biplane fluoroscopic images. Four cylindrical phantoms of 4-, 6-, 8-, and 10-in. diameter were imaged at varying kVp levels to determine the cross-scatter fraction and contrast-to-noise ratio (CNR). Monte Carlo simulations quantified the effect of the gantry angle on the cross-scatter fraction. A cadaver foot with implanted beads was also imaged. The effect of cross-scatter on marker-based tracking accuracy was investigated. Results demonstrated that the cross-scatter fraction varied from 0.15 for the 4-in. cylinder to 0.89 for the 10-in. cylinder when averaged across kVp. The average change in CNR due to cross-scatter ranged from 5% to 36% CNR decreases for the 4- and 10-in. cylinders, respectively. In simulations, the cross-scatter fraction increased with the gantry angle for the 8- and 10-in. cylinders. Cross-scatter significantly increased static-tracking error by 15%, 25%, and 38% for the 6-, 8-, and 10-in. phantoms, respectively, with no significant effect for the foot specimen. The results demonstrated submillimeter marker-based tracking for a range of phantom sizes, despite cross-scatter degradation
Biplane Fluoroscopic Analysis of the Hindfoot Using Model-Based Tracking Techniques: A Static Phantom Study
Beyond XSPEC: Towards Highly Configurable Analysis
We present a quantitative comparison between software features of the defacto
standard X-ray spectral analysis tool, XSPEC, and ISIS, the Interactive
Spectral Interpretation System. Our emphasis is on customized analysis, with
ISIS offered as a strong example of configurable software. While noting that
XSPEC has been of immense value to astronomers, and that its scientific core is
moderately extensible--most commonly via the inclusion of user contributed
"local models"--we identify a series of limitations with its use beyond
conventional spectral modeling. We argue that from the viewpoint of the
astronomical user, the XSPEC internal structure presents a Black Box Problem,
with many of its important features hidden from the top-level interface, thus
discouraging user customization. Drawing from examples in custom modeling,
numerical analysis, parallel computation, visualization, data management, and
automated code generation, we show how a numerically scriptable, modular, and
extensible analysis platform such as ISIS facilitates many forms of advanced
astrophysical inquiry.Comment: Accepted by PASP, for July 2008 (15 pages
Biplane Fluoroscopy for Hindfoot Motion Analysis during Gait: A Model-based Evaluation
The purpose of this study was to quantify the accuracy and precision of a biplane fluoroscopy system for model-based tracking of in vivo hindfoot motion during over-ground gait. Gait was simulated by manually manipulating a cadaver foot specimen through a biplane fluoroscopy system attached to a walkway. Three 1.6-mm diameter steel beads were implanted into the specimen to provide marker-based tracking measurements for comparison to model-based tracking. A CT scan was acquired to define a gold standard of implanted bead positions and to create 3D models for model-based tracking. Static and dynamic trials manipulating the specimen through the capture volume were performed. Marker-based tracking error was calculated relative to the gold standard implanted bead positions. The bias, precision, and root-mean-squared (RMS) error of model-based tracking was calculated relative to the marker-based measurements. The overall RMS error of the model-based tracking method averaged 0.43 ± 0.22 mm and 0.66 ± 0.43° for static and 0.59 ± 0.10 mm and 0.71 ± 0.12° for dynamic trials. The model-based tracking approach represents a non-invasive technique for accurately measuring dynamic hindfoot joint motion during in vivo, weight bearing conditions. The model-based tracking method is recommended for application on the basis of the study results
Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube
Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance
First Principles Study of Structural, Electronic and Magnetic Interplay in Ferroelectromagnetic Yttrium Manganite
We present results of local spin density approximation pseudopotential
calculations for the ferroelectromagnet, yttrium manganite (YMnO3). The origin
of the differences between ferroelectric and non-ferroelectric perovskite
manganites is determined by comparing the calculated properties of yttrium
manganite in its ferroelectric hexagonal and non-ferroelectric orthorhombic
phases. In addition, orthorhombic YMnO3 is compared with the prototypical
non-ferroelectric manganite, lanthanum manganite. We show that, while the
octahedral crystal field splitting of the cubic perovskite structure causes a
centro-symmetric Jahn-Teller distortion around the Mn3+ ion, the markedly
different splitting in hexagonal perovskites creates an electronic
configuration consistent with ferroelectric distortion. We explain the nature
of the distortion, and show that a local magnetic moment on the Mn3+ ion is a
requirement for it to occur.Comment: Replacement of earlier version with error in pseudopotentia
Accurate evaluation of the interstitial KKR-Green function
It is shown that the Brillouin zone integral for the interstitial KKR-Green
function can be evaluated accurately by taking proper care of the free-electron
singularities in the integrand. The proposed method combines two recently
developed methods, a supermatrix method and a subtraction method. This
combination appears to provide a major improvement compared with an earlier
proposal based on the subtraction method only. By this the barrier preventing
the study of important interstitial-like defects, such as an electromigrating
atom halfway along its jump path, can be considered as being razed.Comment: 23 pages, RevTe
Spontaneous emission rates of dipoles in photonic crystal membranes
We show theoretically that finite two-dimensional (2D) photonic crystals in
thin semiconductor membranes strongly modify the spontaneous emission rate of
embedded dipole emitters. Three-dimensional Finite-Difference Time-Domain
calculations show over 7 times inhibition and 15 times enhancement of the
emission rate compared to the vacuum emission rate for judiciously oriented and
positioned dipoles. The vertical index confinement in membranes strongly
enhances modifications of the emission rate as compared to vertically
unconfined 2D photonic crystals. The emission rate modifications inside the
membrane mimic the local electric field mode density in a simple 2D model. The
inhibition of emission saturates exponentially as the crystal size around the
source is increased, with a length that is inversely proportional to the
bandwidth of the emission gap. We obtain inhibition of emission only close to
the slab center. However, enhancement of emission persists even outside the
membrane, with a distance dependence which dependence can be understood by
analyzing the contributions to the spontaneous emission rate of the different
vertically guided modes of the membrane. Finally we show that the emission
changes can even be observed in experiments with ensembles of randomly oriented
dipoles, despite the contribution of dipoles for which no gap exists
Recommended from our members
Space charge behaviour in epoxy laminates under high constant electric field
The development of space charge in insulating materials is one of the main causes of their electrical ageing. The pulsed electro-acoustic method is often used to determine space charge distribution, but the signal analysis in the case of laminate structures is much more complex to analyse. In this paper the authors describe and use a simulated signal in order to study laminates made of epoxy resin and fibre mat. The relatively large conductivity of the fibres compared with that of the resin seems to produce a rapid charge dissociation and recombination in the fibres. Under voltage the presence of fibres close to an electrode seems to promote charge injection
Consequences of local gauge symmetry in empirical tight-binding theory
A method for incorporating electromagnetic fields into empirical
tight-binding theory is derived from the principle of local gauge symmetry.
Gauge invariance is shown to be incompatible with empirical tight-binding
theory unless a representation exists in which the coordinate operator is
diagonal. The present approach takes this basis as fundamental and uses group
theory to construct symmetrized linear combinations of discrete coordinate
eigenkets. This produces orthogonal atomic-like "orbitals" that may be used as
a tight-binding basis. The coordinate matrix in the latter basis includes
intra-atomic matrix elements between different orbitals on the same atom.
Lattice gauge theory is then used to define discrete electromagnetic fields and
their interaction with electrons. Local gauge symmetry is shown to impose
strong restrictions limiting the range of the Hamiltonian in the coordinate
basis. The theory is applied to the semiconductors Ge and Si, for which it is
shown that a basis of 15 orbitals per atom provides a satisfactory description
of the valence bands and the lowest conduction bands. Calculations of the
dielectric function demonstrate that this model yields an accurate joint
density of states, but underestimates the oscillator strength by about 20% in
comparison to a nonlocal empirical pseudopotential calculation.Comment: 23 pages, 7 figures, RevTeX4; submitted to Phys. Rev.
- …
