10,863 research outputs found
Automatic rationalization of yield-line patterns identified using discontinuity layout optimization
The well-known yield-line analysis procedure for slabs has recently been systematically automated, enabling the critical yield-line pattern to be identified quickly and easily, whatever the slab geometry. This has been achieved by using the discontinuity layout optimization (DLO) procedure, which involves using optimization to identify the critical layout of yield-line discontinuities interconnecting regularly spaced nodes distributed across a slab. However, whilst highly accurate solutions can be obtained, the corresponding yield-line patterns are often quite complex in form, especially when relatively dense nodal grids are employed. Here a method of rationalizing the DLO-derived yield-line patterns via a geometry optimization post-processing step is described. Geometry optimization involves adjusting the positions of the nodes, thereby simultaneously simplifying and improving the accuracy of the solution. The mathematical expressions involved are derived analytically, and various practical issues are highlighted and addressed. Finally, an interior point optimizer is used to obtain rationalized solutions for a variety of sample slab analysis problems, clearly demonstrating the efficacy of the proposed rationalization technique
Sex-biased parental care and sexual size dimorphism in a provisioning arthropod
The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests.
To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest.
We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight.
Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species
The theory of magnetic field induced domain-wall propagation in magnetic nanowires
A global picture of magnetic domain wall (DW) propagation in a nanowire
driven by a magnetic field is obtained: A static DW cannot exist in a
homogeneous magnetic nanowire when an external magnetic field is applied. Thus,
a DW must vary with time under a static magnetic field. A moving DW must
dissipate energy due to the Gilbert damping. As a result, the wire has to
release its Zeeman energy through the DW propagation along the field direction.
The DW propagation speed is proportional to the energy dissipation rate that is
determined by the DW structure. An oscillatory DW motion, either the precession
around the wire axis or the breath of DW width, should lead to the speed
oscillation.Comment: 4 pages, 2 figure
VO: Vaccine Ontology
Vaccine research, as well as the development, testing, clinical trials, and commercial uses of vaccines involve complex processes with various biological data that include gene and protein expression, analysis of molecular and cellular interactions, study of tissue and whole body responses, and extensive epidemiological modeling. Although many data resources are available to meet different aspects of vaccine needs, it remains a challenge how we are to standardize vaccine annotation, integrate data about varied vaccine types and resources, and support advanced vaccine data analysis and inference. To address these problems, the community-based Vaccine Ontology (VO, "http://www.violinet.org/vaccineontology":http://www.violinet.org/vaccineontology) has been developed through collaboration with vaccine researchers and many national and international centers and programs, including the National Center for Biomedical Ontology (NCBO), the Infectious Disease Ontology (IDO) Initiative, and the Ontology for Biomedical Investigations (OBI). VO utilizes the Basic Formal Ontology (BFO) as the top ontology and the Relation Ontology (RO) for definition of term relationships. VO is represented in the Web Ontology Language (OWL) and edited using the Protégé-OWL. Currently VO contains more than 2000 terms and relationships. VO emphasizes on classification of vaccines and vaccine components, vaccine quality and phenotypes, and host immune response to vaccines. These reflect different aspects of vaccine composition and biology and can thus be used to model individual vaccines. More than 200 licensed vaccines and many vaccine candidates in research or clinical trials have been modeled in VO. VO is being used for vaccine literature mining through collaboration with the National Center for Integrative Biomedical Informatics (NCIBI). Multiple VO applications will be presented.

Computational layout design optimization of frame structures
Engineers often expend considerable effort identifying the most efficient cross-section sizes for the individual structural members forming a structure, but may neglect to check whether members are optimally positioned, or are even needed at all. This can lead to far more material being used to form a building structure than is needed. To address this, layout optimization can potentially be used early in the design process to identify efficient arrangements of structural members. This paper introduces an interactive design approach that combines parametric modelling and layout optimization, using an adaptive ‘member adding’ technique to allow large scale problems to be solved on a standard desktop PC. Incorporation of the approach in Rhino-Grasshopper allows integration of geometric modelling and structural layout optimization within a single interactive modeling environment. This paper briefly outlines the underlying theory and implementation details, and then describes application of the approach to benchmark problems and a case study problem, a three-centred space frame arch roof. In this case it is shown that a 30% reduction in material usage can potentially be achieved through the use of a layout optimization-based approach, but that measures to improve the practicality of the solutions for use in practice are required. This is being addressed as part of a new collaborative research project involving the Universities of Bath, Sheffield and Edinburgh
Boundaries of Disk-like Self-affine Tiles
Let be a disk-like self-affine tile generated by an
integral expanding matrix and a consecutive collinear digit set , and let be the characteristic polynomial of . In the
paper, we identify the boundary with a sofic system by
constructing a neighbor graph and derive equivalent conditions for the pair
to be a number system. Moreover, by using the graph-directed
construction and a device of pseudo-norm , we find the generalized
Hausdorff dimension where
is the spectral radius of certain contact matrix . Especially,
when is a similarity, we obtain the standard Hausdorff dimension where is the largest positive zero of
the cubic polynomial , which is simpler than
the known result.Comment: 26 pages, 11 figure
Automatic yield-line analysis of practical slab configurations via discontinuity layout optimization
The yield-line method provides a powerful means of rapidly estimating the ultimate load that can be carried by a reinforced concrete slab. The method can reveal hidden reserves of strength in existing slabs and can lead to highly economic slabs when used in design. Originally conceived before the widespread availability of computers, the yield-line method subsequently proved difficult to computerize, limiting its appeal in recent years. However, it was recently demonstrated that the discontinuity layout optimization (DLO) procedure could be used to systematically automate the method, and various isotropically reinforced, uniformly loaded slab examples were used to demonstrate this. The main purpose of this paper is to demonstrate that the DLO procedure can also be applied to a wide range of more practical slab problems, for example involving orthotropic reinforcement, internal columns, and point, line, and patch loads. The efficacy of the procedure is demonstrated via application to a variety of example problems from the literature; for all problems considered solutions are presented that improve upon existing numerical solutions. Furthermore, in a number of cases, solutions derived using previously proposed automated yield-line analysis procedures are shown to be highly nonconservative
Recommended from our members
Structural and molecular basis of ZNRF3/RNF43 transmembrane ubiquitin ligase inhibition by the Wnt agonist R-spondin
The four R-spondin (Rspo) proteins are secreted agonists of Wnt signalling in vertebrates, functioning in embryogenesis and adult stem cell biology. Through ubiquitination and degradation of Wnt receptors, the transmembrane E3 ubiquitin ligase ZNRF3 and related RNF43 antagonize Wnt signalling. Rspo ligands have been reported to inhibit the ligase activity through direct interaction with ZNRF3 and RNF43. Here we report multiple crystal structures of the ZNRF3 ectodomain (ZNRF3ecto), a signalling-competent Furin1–Furin2 (Fu1–Fu2) fragment of Rspo2 (Rspo2Fu1–Fu2), and Rspo2Fu1–Fu2 in complex with ZNRF3ecto, or RNF43ecto. A prominent loop in Fu1 clamps into equivalent grooves in the ZNRF3ecto and RNF43ecto surface. Rspo binding enhances dimerization of ZNRF3ecto but not of RNF43ecto. Comparison of the four Rspo proteins, mutants and chimeras in biophysical and cellular assays shows that their signalling potency depends on their ability to recruit ZNRF3 or RNF43 via Fu1 into a complex with LGR receptors, which interact with Rspo via Fu2
Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall
This study investigates long-term trends in tropical cyclones (TCs) over the extratropical western North Pacific (WNP) over a period of 35 years (1982-2016). The area analyzed extended across 30-45 degrees N and 120-150 degrees E, including the regions of Korea and Japan that were seriously affected by TCs. The northward migration of TCs over the WNP to the mid-latitudes showed a sharp increase in early fall. In addition, the duration of TCs over the WNP that migrated northwards showed an increase, specifically in early to mid-September. Therefore, more recently, TC tracks have been observed to significantly extend into the mid-latitudes. The recent northward extension of TC tracks over the WNP in early fall was observed to be associated with changes in environmental conditions that were favorable for TC activities, including an increase in sea surface temperature (SST), decrease in vertical wind shear, expansion of subtropical highs, strong easterly steering winds, and an increase in relative vorticity. In contrast, northward migrations of TCs to Korea and Japan showed a decline in late August, because of the presence of unfavorable environmental conditions for TC activities. These changes in environmental conditions, such as SST and vertical wind shear, can be partially associated with the Pacific decadal oscillation
Existing climate change will lead to pronounced shifts in the diversity of soil prokaryotes
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in mSystems 3 (2018): e00167-18, doi:10.1128/mSystems.00167-18.Soil bacteria are key to ecosystem function and maintenance of soil fertility. Leveraging associations of current geographic distributions of bacteria with historic climate, we predict that soil bacterial diversity will increase across the majority (∼75%) of the Tibetan Plateau and northern North America if bacterial communities equilibrate with existing climatic conditions. This prediction is possible because the current distributions of soil bacteria have stronger correlations with climate from ∼50 years ago than with current climate. This lag is likely associated with the time it takes for soil properties to adjust to changes in climate. The predicted changes are location specific and differ across bacterial taxa, including some bacteria that are predicted to have reductions in their distributions. These findings illuminate the widespread potential of climate change to influence belowground diversity and the importance of considering bacterial communities when assessing climate impacts on terrestrial ecosystems.This work was supported by the Strategic Priority Research Program (XDB15010101, XDA05050404) of the Chinese Academy of Sciences, the National Program on Key Basic Research Project (2014CB954002, 2014CB954004), the National Natural Science Foundation of China (41701298, 41371254), the “135” Plan and Frontiers Projects of Institute of Soil Science (ISSASIP1641), and the National Science and Technology Foundation project (2015FY110100). J.A.G. was supported by the U.S. Dept. of Energy under contract DE-AC02-06CH11357. N.F. was supported by a grant from the National Science Foundation (DEB-0953331). K.S.P. and J.L. were supported by the National Science Foundation (DMS-1069303), the Gordon and Betty Moore Foundation (grant no. 3300), the Gladstone Institutes, and a gift from the San Simeon Fund
- …
