14,917 research outputs found

    Causes of severe visual impairment and blindness in Bangladesh: a study of 1935 children.

    No full text
    OBJECTIVE: To identify the anatomical site and underlying aetiology of severe visual impairment and blindness (SVI/BL) in children in Bangladesh. DESIGN: A national case series. METHODS: Children were recruited from all 64 districts in Bangladesh through multiple sources. Causes were determined and categorised using standard World Health Organization methods. RESULTS: 1935 SVI/BL children were recruited. The median age was 132 months, and boys accounted for 63.1% of the sample. The main site of abnormality was lens (32.5%), mainly unoperated cataract, followed by corneal pathology (26.6%) and disorders of the whole eye (13.1%). Lens-related blindness was the leading cause in boys (37.0%) compared with corneal blindness in girls (29.8%). In 593 children, visual loss was due to childhood factors, over 75% being attributed to vitamin A deficiency. Overall 1338 children (69.2%) had avoidable causes. Only 2% of the country's estimated SVI/BL children have access to education and rehabilitation services. CONCLUSIONS: This is the first large-scale study of SVI/BL children in Bangladesh over two-thirds of whom had avoidable causes. Strategies for control are discussed

    Cataract prevalence, cataract surgical coverage and barriers to uptake of cataract surgical services in Pakistan: the Pakistan National Blindness and Visual Impairment Survey.

    No full text
    AIM: To estimate the prevalence of visual impairment and blindness caused by cataract, the prevalence of aphakia/pseudophakia, cataract surgical coverage (CSC) and to identify barriers to the uptake of cataract services among adults aged >or=30 years in Pakistan. METHODS: Probability proportional-to-size procedures were used to select a nationally representative sample of adults. Each subject underwent interview, visual acuity measurement, autorefraction, biometry and ophthalmic examination. Those that saw <6/12 in either eye underwent a more intensive examination procedure including corrected visual acuity, slit lamp and dilated fundus examination. CSC was calculated for different levels of visual loss by person and by eye. Individuals with <6/60 in the better eye as a result of cataract were interviewed regarding barriers. RESULTS: 16 507 Adults were examined (95.5% response rate). The crude prevalence of blindness (presenting <3/60 in the better eye) caused by bilateral cataract was 1.75% (95% CI 1.55%, 1.96%). 1317 Participants (633 men; 684 women) had undergone cataract surgery in one or both eyes, giving a crude prevalence of 8.0% (95% CI 7.6%, 8.4%). The CSC (persons) at <3/60, <6/60 and <6/18 were 77.1%, 69.3% and 43.7%, respectively. The CSC (eyes) at <3/60, <6/60 and <6/18 were 61.4%, 52.2% and 40.7%, respectively. Cost of surgery (76.1%) was the main barrier to surgery. CONCLUSION: Approximately 570 000 adults are estimated to be blind (<3/60) as a result of cataract in Pakistan, and 3,560000 eyes have a visual acuity of <6/60 because of cataract. Overall, the national surgical coverage is good but underserved populations have been identified

    Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation

    Get PDF
    Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV management strategies, and identify surveillance gaps. ORV management has resulted in a decrease in RABV cases over time within vaccination zones (from occupancy (ψ) of 0.60 standard error (SE) = 0.03 in the spring of 2006 to ψ of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in the enzootic area (from ψ of 0.60 SE = 0.03 in the spring of 2006 to ψ of 0.45 SE = 0.05 in the spring 2017). Although RABV occurrence was related to habitat type, greater impacts were associated with ORV and trap–vaccinate–release (TVR) campaigns, in addition to seasonal and yearly trends. Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine Bait (ONRAB) compared to RABORAL V-RG®. Our approach tracked changes in RABV occurrence across space and time, identified risk corridors for potential incursions into Canada, and highlighted surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are able to provide guidance for future RABV management

    Secondary Waves, and/or the "Reflection" From and "Transmission" Through a Coronal Hole of an EUV Wave Associated With the 2011 February 15 X2.2 Flare Observed With SDO/AIA and STEREO/EUVI

    Full text link
    For the first time, the kinematic evolution of a coronal wave over the entire solar surface is studied. Full Sun maps can be made by combining images from the Solar Terrestrial Relations Observatory satellites, Ahead and Behind, and the Solar Dynamics Observatory, thanks to the wide angular separation between them. We study the propagation of a coronal wave, also known as "EIT" wave, and its interaction with a coronal hole resulting in secondary waves and/or reflection and transmission. We explore the possibility of the wave obeying the law of reflection of waves. In a detailed example we find that a loop arcade at the coronal hole boundary cascades and oscillates as a result of the EUV wave passage and triggers a wave directed eastwards that appears to have reflected. We find that the speed of this wave decelerates to an asymptotic value, which is less than half of the primary EUV wave speed. Thanks to the full Sun coverage we are able to determine that part of the primary wave is transmitted through the coronal hole. This is the first observation of its kind. The kinematic measurements of the reflected and transmitted wave tracks are consistent with a fast-mode MHD wave interpretation. Eventually, all wave tracks decelerate and disappear at a distance. A possible scenario of the whole process is that the wave is initially driven by the expanding coronal mass ejection and subsequently decouples from the driver and then propagates at the local fast-mode speed.Comment: 30 pages, 12 figures, accepted for publication in Ap

    First SDO AIA Observations of a Global Coronal EUV "Wave": Multiple Components and "Ripples"

    Full text link
    We present the first SDO AIA observations of a global coronal EUV disturbance (so-called "EIT wave") revealed in unprecedented detail. The disturbance observed on 2010 April 8 exhibits two components: one diffuse pulse superimposed on which are multiple sharp fronts that have slow and fast components. The disturbance originates in front of erupting coronal loops and some sharp fronts undergo accelerations, both effects implying that the disturbance is driven by a CME. The diffuse pulse, propagating at a uniform velocity of 204-238 km/s with very little angular dependence within its extent in the south, maintains its coherence and stable profile for ~30 minutes. Its arrival at increasing distances coincides with the onsets of loop expansions and the slow sharp front. The fast sharp front overtakes the slow front, producing multiple "ripples" and steepening the local pulse, and both fronts propagate independently afterwards. This behavior resembles the nature of real waves. Unexpectedly, the amplitude and FWHM of the diffuse pulse decrease linearly with distance. A hybrid model, combining both wave and non-wave components, can explain many, but not all, of the observations. Discoveries of the two-component fronts and multiple ripples were made possible for the first time thanks to AIA's high cadences (10-20 s) and high signal-to-noise ratio.Comment: 7 pages, 5 figure

    Mechanical control of the directional stepping dynamics of the kinesin motor

    Full text link
    Among the multiple steps constituting the kinesin's mechanochemical cycle, one of the most interesting events is observed when kinesins move an 8-nm step from one microtubule (MT)-binding site to another. The stepping motion that occurs within a relatively short time scale (~100 microsec) is, however, beyond the resolution of current experiments, therefore a basic understanding to the real-time dynamics within the 8-nm step is still lacking. For instance, the rate of power stroke (or conformational change), that leads to the undocked-to-docked transition of neck-linker, is not known, and the existence of a substep during the 8-nm step still remains a controversial issue in the kinesin community. By using explicit structures of the kinesin dimer and the MT consisting of 13 protofilaments (PFs), we study the stepping dynamics with varying rates of power stroke (kp). We estimate that 1/kp <~ 20 microsec to avoid a substep in an averaged time trace. For a slow power stroke with 1/kp>20 microsec, the averaged time trace shows a substep that implies the existence of a transient intermediate, which is reminiscent of a recent single molecule experiment at high resolution. We identify the intermediate as a conformation in which the tethered head is trapped in the sideway binding site of the neighboring PF. We also find a partial unfolding (cracking) of the binding motifs occurring at the transition state ensemble along the pathways prior to binding between the kinesin and MT.Comment: 26 pages, 10 figure

    Correlation-driven eightfold magnetic anisotropy in a two-dimensional oxide monolayer.

    Get PDF
    Engineering magnetic anisotropy in two-dimensional systems has enormous scientific and technological implications. The uniaxial anisotropy universally exhibited by two-dimensional magnets has only two stable spin directions, demanding 180° spin switching between states. We demonstrate a previously unobserved eightfold anisotropy in magnetic SrRuO3 monolayers by inducing a spin reorientation in (SrRuO3)1/(SrTiO3) N superlattices, in which the magnetic easy axis of Ru spins is transformed from uniaxial 〈001〉 direction (N &lt; 3) to eightfold 〈111〉 directions (N ≥ 3). This eightfold anisotropy enables 71° and 109° spin switching in SrRuO3 monolayers, analogous to 71° and 109° polarization switching in ferroelectric BiFeO3. First-principle calculations reveal that increasing the SrTiO3 layer thickness induces an emergent correlation-driven orbital ordering, tuning spin-orbit interactions and reorienting the SrRuO3 monolayer easy axis. Our work demonstrates that correlation effects can be exploited to substantially change spin-orbit interactions, stabilizing unprecedented properties in two-dimensional magnets and opening rich opportunities for low-power, multistate device applications

    A cost-effective method to quantify biological surface sediment reworking

    Get PDF
    We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g., luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2.d-1, such as triggered by intermediate density (774 m-2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2.d-1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution

    The Wave Properties of Coronal Bright Fronts Observed Using SDO/AIA

    Full text link
    Coronal bright fronts (CBFs) are large scale wavefronts that propagate though the solar corona at hundreds of kilometers per second. While their kinematics have been studied in detail, many questions remain regarding the temporal evolution of their amplitude and pulse width. Here, contemporaneous high cadence, multi-thermal observations of the solar corona from the Solar Dynamic Observatory (SDO) and Solar TErrestrial RElations Observatory (STEREO) spacecraft are used to determine the kinematics and expansion rate of a CBF wavefront observed on 2010 August 14. The CBF was found to have a lower initial velocity with weaker deceleration in STEREO observations compared to SDO (~340 km/s and -72 m/s/s as opposed to ~410 km/s and -279 m/s/s). The CBF kinematics from SDO were found to be highly passband-dependent, with an initial velocity ranging from 379+/-12 km/s to 460+/-28 km/s and acceleration ranging from -128+/-28 m/s/s to -431+/-86 m/s/s in the 335A and 304A passbands respectively. These kinematics were used to estimate a quiet coronal magnetic field strength range of ~1-2 G. Significant pulse broadening was also observed, with expansion rates of ~130 km/s (STEREO) and ~220 km/s (SDO). By treating the CBF as a linear superposition of sinusoidal waves within a Gaussian envelope, the resulting dispersion rate of the pulse was found to be ~8-13 Mm^2 s^-1. These results are indicative of a fast-mode magnetoacoustic wave pulse propagating through an inhomogeneous medium.Comment: 14 pages, 2 figures. Accepted for publication in The Astrophysical Journal Letter
    corecore