222 research outputs found

    Simulation and first characterization of MAPS test structures with gain for timing applications

    Get PDF
    Thanks to their advantages in terms of easiness of manufacturing and reduced production costs, Monolithic Active Pixel Sensors (MAPS) represent an appealing solution for radiation imaging applications, which require to cover large areas with pixelated detectors. In the next upgrade of the ALICE detector, that will have to deal with the higher event rate resulting from the planned increase in the LHC luminosity, it is foreseen to include two additional sensor layers to perform Time of Flight (ToF) measurements. Trying to reach the challenging timing resolution required by the ALICE ToF layers, an internal gain layer has been included in the test structures of the third engineering run of the ARCADIA project to improve the timing performance of this MAPS technology. In the paper we will present an overview of the main results obtained from the electrical and the dynamic characterization of the fabricated devices, which have been compared with the behavior expected from the preliminary TCAD simulations carried out in the design phase. The experimental results confirmed the feasibility of embedding a gain layer in the ARCADIA 110 nm CMOS technology to develop monolithic LGADs

    First experimental results of the spatial resolution of RSD pad arrays read out with a 16-ch board

    Get PDF
    Resistive Silicon Detectors (RSD, also known as AC-LGAD) are innovative silicon sensors, based on the LGAD technology, characterized by a continuous gain layer that spreads across the whole sensor active area. RSDs are very promising tracking detectors, thanks to the combination of the built-in signal sharing with the internal charge multiplication, which allows large signals to be seen over multiple read-out channels. This work presents the first experimental results obtained from a 3×\times4 array with 200~\mum~pitch, coming from the RSD2 production manufactured by FBK, read out with a 16-ch digitizer. A machine learning model has been trained, with experimental data taken with a precise TCT laser setup, and then used to predict the laser shot positions, finding a spatial resolution of ~ 5.5 um

    First results on monolithic CMOS detector with internal gain

    Get PDF
    : In this paper we report on a set of characterisations carried out on the first monolithic LGAD prototype integrated in a customised 110 nm CMOS process having a depleted active volume thickness of 48 μm. This prototype is formed by a pixel array where each pixel has a total size of 100 μm × 250 μm and includes a high-speed front-end amplifier. After describing the sensor and the electronics architecture, both laboratory and in-beam measurements are reported and described. Optical characterisations performed with an IR pulsed laser setup have shown a sensor internal gain of about 2.5. With the same experimental setup, the electronic jitter was found to be between 50 ps and 150 ps, depending on the signal amplitude. Moreover, the analysis of a test beam performed at the Proton Synchrotron (PS) T10 facility of CERN with 10 GeV/c protons and pions indicated that the overall detector time resolution is in the range of 234 ps to 244 ps. Further TCAD investigations, based on the doping profile extracted from C(V) measurements, confirmed the multiplication gain measured on the test devices. Finally, TCAD simulations were used to tune the future doping concentration of the gain layer implant, targeting sensors with a higher avalanche gain. This adjustment is expected to enhance the timing performance of the sensors of the future productions, in order to cope with the high event rate expected in most of the near future high-energy and high-luminosity physics experiments, where the time resolution will be essential to disentangle overlapping events and it will also be crucial for Particle IDentification (PID

    First results on monolithic CMOS detector with internal gain

    Full text link
    In this paper we report on a set of characterisations carried out on the first monolithic LGAD prototype integrated in a customised 110 nm CMOS process having a depleted active volume thickness of 48 μ\mum. This prototype is formed by a pixel array where each pixel has a total size of 100 μ\mum ×\times 250 μ\mum and includes a high-speed front-end amplifier. After describing the sensor and the electronics architecture, both laboratory and in-beam measurements are reported and described. Optical characterisations performed with an IR pulsed laser setup have shown a sensor internal gain of about 2.5. With the same experimental setup, the electronic jitter was found to be between 50 ps and 150 ps, depending on the signal amplitude. Moreover, the analysis of a test beam performed at the Proton Synchrotron (PS) T10 facility of CERN with 10 GeV/c protons and pions indicated that the overall detector time resolution is in the range of 234 ps to 244 ps. Further TCAD investigations, based on the doping profile extracted from C(V)C(V) measurements, confirmed the multiplication gain measured on the test devices. Finally, TCAD simulations were used to tune the future doping concentration of the gain layer implant, targeting sensors with a higher avalanche gain. This adjustment is expected to enhance the timing performance of the sensors of the future productions, in order to cope with the high event rate expected in most of the near future high-energy and high-luminosity physics experiments, where the time resolution will be essential to disentangle overlapping events and it will also be crucial for Particle IDentification (PID)

    High-precision 4D tracking with large pixels using thin resistive silicon detectors

    Get PDF
    The basic principle of operation of silicon sensors with resistive read-out is built-in charge sharing. Resistive Silicon Detectors (RSD, also known as AC-LGAD), exploiting the signals seen on the electrodes surrounding the impact point, achieve excellent space and time resolutions even with very large pixels. In this paper, a TCT system using a 1064 nm picosecond laser is used to characterize RSD sensors produced by Fondazione Bruno Kessler. The paper first introduces the parametrization of the errors in the determination of the position and time coordinates in RSD, then outlines the reconstruction method, and finally presents the results. Three different pixel pitches are used in the analysis: 200 × 340, 450 × 450, and 1300 × 1300 μm2. At gain = 30, the 450 × 450 μm2 pixel achieves a time jitter of 20 ps and a spatial resolution of 15 μm concurrently, while the 1300 × 1300 μm2 pixel achieves 30 ps and 30 μm, respectively. The implementation of cross-shaped electrodes improves considerably the response uniformity over the pixel surface

    High-Precision 4D Tracking with Large Pixels using Thin Resistive Silicon Detectors

    Full text link
    The basic principle of operation of silicon sensors with resistive read-out is built-in charge sharing. Resistive Silicon Detectors (RSD, also known as AC-LGAD), exploiting the signals seen on the electrodes surrounding the impact point, achieve excellent space and time resolutions even with very large pixels. In this paper, a TCT system using a 1064 nm picosecond laser is used to characterize sensors from the second RSD production at the Fondazione Bruno Kessler. The paper first introduces the parametrization of the errors in the determination of the position and time coordinates in RSD, then outlines the reconstruction method, and finally presents the results. Three different pixel sizes are used in the analysis: 200 x 340, 450 x 450, and 1300 x 1300 microns^2. At gain = 30, the 450 x 450 microns^2 pixel achieves a time jitter of 20 ps and a spatial resolution of 15 microns concurrently, while the 1300 x 1300 microns^2 pixel achieves 30 ps and 30 micron, respectively. The implementation of cross-shaped electrodes improves considerably the response uniformity over the pixel surface.Comment: 28 pages, 23 figures submitted to NIM

    Probing Strangeness Hadronization with Event-by-Event Production of Multistrange Hadrons

    Get PDF
    This Letter presents the first measurement of event-by-event fluctuations of the net number (difference between the particle and antiparticle multiplicities) of multistrange hadrons Ξ- and Ξ ̄+ and its correlation with the net-kaon number using the data collected by the ALICE Collaboration in pp, p-Pb, and Pb-Pb collisions at a center-of-mass energy per nucleon pair sNN=5.02 TeV. The statistical hadronization model with a correlation over three units of rapidity between hadrons having the same and opposite strangeness content successfully describes the results. On the other hand, string-fragmentation models that mainly correlate strange hadrons with opposite strange quark content over a small rapidity range fail to describe the data

    Measurement of the production and elliptic flow of (anti)nuclei in Xe-Xe collisions at √sNN =5.44 TeV

    Get PDF
    Measurements of (anti)deuteron and (anti)He3 production in the rapidity range |y|<0.5 as a function of the transverse momentum and event multiplicity in Xe-Xe collisions at a center-of-mass energy per nucleon-nucleon pair of sNN=5.44 TeV are presented. The coalescence parameters B2 and B3 are measured as a function of the transverse momentum per nucleon. The ratios between (anti)deuteron and (anti)He3 yields and those of (anti)protons and pions are reported as a function of the mean charged-particle multiplicity density and compared with two implementations of the statistical hadronization model and with coalescence predictions. The elliptic flow of (anti)deuterons is measured for the first time in Xe-Xe collisions and shows features similar to those already observed in Pb-Pb collisions, i.e., the mass ordering at low transverse momentum and the meson-baryon grouping at intermediate transverse momentum. The production of nuclei is particularly sensitive to the chemical freeze-out temperature of the system created in the collision, which is extracted from a grand-canonical-ensemble-based thermal fit, performed for the first time including light nuclei along with light-flavor hadrons in Xe-Xe collisions. The extracted chemical freeze-out temperature Tchem=(154.2±1.1) MeV in Xe-Xe collisions is similar to that observed in Pb-Pb collisions and close to the crossover temperature predicted by lattice quantum chromodynamics calculations

    Exploring the Strong Interaction of Three-Body Systems at the LHC

    Get PDF
    Deuterons are atomic nuclei composed of a neutron and a proton held together by the strong interaction. Unbound ensembles composed of a deuteron and a third nucleon have been investigated in the past using scattering experiments, and they constitute a fundamental reference in nuclear physics to constrain nuclear interactions and the properties of nuclei. In this work, K+-d and p-d femtoscopic correlations measured by the ALICE Collaboration in proton-proton (pp) collisions at √s = 13 TeV at the Large Hadron Collider (LHC) are presented. It is demonstrated that correlations in momentum space between deuterons and kaons or protons allow us to study three-hadron systems at distances comparable with the proton radius. The analysis of the K+-d correlation shows that the relative distances at which deuterons and protons or kaons are produced are around 2 fm. The analysis of the p-d correlation shows that only a full three-body calculation that accounts for the internal structure of the deuteron can explain the data. In particular, the sensitivity of the observable to the short-range part of the interaction is demonstrated. These results indicate that correlations involving light nuclei in pp collisions at the LHC will also provide access to any three-body system in the strange and charm sectors

    Proton emission in ultraperipheral Pb-Pb collisions at TeV

    Get PDF
    The first measurements of proton emission accompanied by neutron emission in the electromagnetic dissociation (EMD) of Pb208 nuclei in the ALICE experiment at the Large Hadron Collider are presented. The EMD protons and neutrons emitted at very forward rapidities are detected by the proton and neutron zero degree calorimeters of the ALICE experiment. The emission cross sections of zero, one, two, and three protons accompanied by at least one neutron were measured in ultraperipheral Pb208-Pb208 collisions at a center-of-mass energy per nucleon pair sNN=5.02TeV. The 0p and 3p cross sections are described by the RELDIS model within their measurement uncertainties, while the 1p and 2p cross sections are underestimated by the model by 17-25%. According to this model, these 0p, 1p, 2p, and 3p cross sections are associated, respectively, with the production of various isotopes of Pb, Tl, Hg, and Au in the EMD of Pb208. The cross sections of the emission of a single proton accompanied by the emission of one, two, or three neutrons in EMD were also measured. The data are significantly overestimated by the RELDIS model, which predicts that the (1p,1n), (1p,2n), and (1p,3n) cross sections are very similar to the cross sections for the production of the thallium isotopes Tl206,205,204
    corecore