1,401 research outputs found

    Effect of a legume cover crop on carbon storage and erosion in an ultisol under maize cultivation in southern Benin

    Get PDF
    Field experiment was conducted from 1988 to 1999 at an experimental farm at Agonkanmey, near Cotonou in southern Benin, to study the effect of relay-cropping maize through Mucuna pruriens (var. utilis). The relay-cropping system was compared with traditional maize cropping system without any input, and with a maize cropping system with mineral fertilizers (NPK). Special attention was given on the changes in soil C during the period of the experiment in relation to residue biomass C returned to the soil, runoff and soil erosion losses, and loss of C with erosion. The soils are classified as sandy loam Typic Kandiustult. The general properties of these soils are given. For this soil type, relay cropping of maize and mucuna was very effective in enhancing C sequestration: change in Ct (total C content) stock for 0 to 40 cm depth was 1.3 t C/ha per year over the 12-year period of the experiment, ranging among the highest rates recorded for the eco-region. This increase resulted first from the high amount of residue biomass provided by mucuna, which amounted to 10 t DM/ha per year (83% aboveground). Mucuna residues, supplying the soil with N, also favoured the production of maize biomass, and total mucuna plus maize residue biomass returned to the soil was approximately 20 t/ha per year. In contrast, non-fertilized and fertilized continuous maize cultivation resulted in -0.2 and 0.2 t C/ha per year change in Ct stock for 0 to 40 cm depth, respectively. Total residue biomass was 8 and 13 t/ha per year, including 77 and 29% by weeds, respectively. Thick mulch produced by mucuna decreased losses by runoff and erosion, which were 0.28, 0.12 and 0.08 mm/mm and 34.0, 9.0 and 3.0 t/ha per year in unfertilized, fertilized with NPK and mucuna treatments, respectively. Eroded C was estimated at 0.3, 0.1 and 1.0 t C/ha per year in unfertilized, fertilized with NPK and mucuna treatments, respectively. Through its benefits on soil organic matter management, weed suppression and erosion control, cropping systems including a legume crop may have an adverse impact from a global change standpoint

    Integrating Data on Ethnicity, Geography, and Conflict: The Ethnic Power Relations Dataset Family.

    Get PDF
    ArticleThis article introduces the new Family of Ethnic Power Relations (EPR) data sets, version 2014, which is the latest in a series of data sets on ethnicity that have stimulated civil war research in the past decade. The EPR Family provides data on ethnic groups’ access to state power, their settlement patterns, links to rebel organizations, transborder ethnic kin relations, and intraethnic cleavages. The new 2014 version does not only extend the data set’s temporal coverage from 2009 to 2013, but it also offers several new features, such as a new measure of regional autonomy that is independent of national-level executive power and a new data set component coding intraethnic identities and cleavages. Moreover, for the first time, detailed documentation of the EPR data is provided through the EPR Atlas. This article presents these novelties in detail and compares the EPR Family 2014 to the most relevant alternative data sets on ethnicity.Swiss National Science FoundationSwiss Agency for Development and Cooperation (SDC

    Effects of build orientation and element partitioning on microstructure and mechanical properties of biomedical Ti-6Al-4V alloy produced by laser sintering

    Get PDF
    Direct Metal Laser Sintering (DMLS) technology was used to produce tensile and flexural samples based on the Ti-6Al-4V biomedical composition. Tensile samples were produced in three different orientations in order to investigate the effect of building direction on the mechanical behavior. On the other hand, flexural samples were submitted to thermal treatments to simulate the firing cycle commonly used to veneer metallic devices with ceramics in dental applications. Roughness and hardness measurements as well as tensile and flexural mechanical tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate sample microstructure. Results evidenced a difference in the mechanical response of tensile samples built in orthogonal directions. In terms of microstructure, samples not submitted to the firing cycle show a single phase acicular α’ (hcp) structure typical of metal parts subject to high cooling rates. After the firing cycle, samples show a reduction of hardness and strength due to the formation of laths of the β (bcc) phase at the boundaries of the primary formed α’ plates as well as to lattice parameters variation of the hcp phase. Element partitioning during the firing cycle gives rise to high concentration of V atoms (up to 20 wt%) at the plate boundaries where the β phase preferentially forms

    Bank Liquidity Creation: A New Global Dataset for Developing and Emerging Countries

    Get PDF
    The pre-Global Financial Crisis build-up, followed by the post-crisis collapse, in bank liquidity creation in developed countries is well-documented (Berger and Bowman, 2009). Comparable analyses on developing and emerging countries (DECs) have been severely hindered by the lack of detailed bank-by-bank balance sheet data. This paper proposes a new, high-frequency, Aggregate Bank Liquidity Creation (A-BLC) measure for 114 DECs on a comparable cross-country basis, which relies on macroeconomic, country-wide, banking systems’ balance sheet data. The A-BLC database allows us to assess the extent of bank fragility arising from illiquidity associated with intermediation at the banking system level for every DEC, at a monthly frequency over the period 2001-2016. Our measure captures more accurately than other measures proposed in the literature the evolution of bank liquidity creation in the DECs. Stylised facts and panel-regression analysis suggest a sharp pre-crisis build-up and post-crisis fall in liquidity creation in DECs, larger then that observed for developed countries. In addition, financial depth and stability appear as particularly important drivers of A-BLC in DECs

    Soil methane sink capacity response to a long-term wildfire chronosequence in Northern Sweden

    Get PDF
    Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished

    Gain control network conditions in early sensory coding

    Get PDF
    Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models

    Drought impact on forest carbon dynamics and fluxes in Amazonia

    Get PDF
    In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth. We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.Gordon and Betty Moore FoundationNatural Environment Research Council (NERC)EU FP7 Amazalert (282664) projectEU FP7GEOCARBON (283080) projectNational Council for Scientific and Technological Development (CNPq, Brazil)ARC - fellowship awardERC - Advanced Investigator AwardRoyal Society - Wolfson Research Merit AwardJackson FoundationJohn Fell Fun

    NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens

    Get PDF
    Members of the intracellular nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family contribute to immune responses through activation of nuclear factor-kappa B (NF-kappa B), type I interferon and inflammasome signalling(1). Mice lacking the NLR family member NLRP6 were recently shown to be susceptible to colitis and colorectal tumorigenesis(2-4), but the role of NLRP6 in microbial infections and the nature of the inflammatory signalling pathways regulated by NLRP6 remain unclear. Here we show that Nlrp6-deficient mice are highly resistant to infection with the bacterial pathogens Listeria monocytogenes, Salmonella typhimurium and Escherichia coli. Infected Nlrp6-deficient mice had increased numbers of monocytes and neutrophils in circulation, and NLRP6 signalling in both haematopoietic and radioresistant cells contributed to increased susceptibility. Nlrp6 deficiency enhanced activation of mitogen-activated protein kinase (MAPK) and the canonical NF-kappa B pathway after Toll-like receptor ligation, but not cytosolic NOD1/2 ligation, in vitro. Consequently, infected Nlrp6-deficient cells produced increased levels of NF-kappa B-and MAPK-dependent cytokines and chemokines. Thus, our results reveal NLRP6 as a negative regulator of inflammatory signalling, and demonstrate a role for this NLR in impeding clearance of both Gram-positive and -negative bacterial pathogens
    corecore