10,607 research outputs found

    The quantum dynamics of atomic magnets, co-tunneling and dipolar-biased tunneling

    Full text link
    Multi-spins tunneling cross-relaxations in an ensemble of weakly-coupled Ho3+^{3+} ions, mediated by weak anisotropic dipolar interactions, can be evidenced by ac-susceptibility measurements in a high temperature regime. Based on a four-body representation, including the rare-earth nuclear spin, two-ions tunneling mechanisms can be attributed to both dipolar-biased tunneling and co-tunneling processes. The co-reversal involving entangled pairs of magnetic moments is discussed with a particular emphasis, giving new evidences to elucidate the many-body quantum dynamics.Comment: 4 figure

    Random matrix ensembles associated with Lax matrices

    Full text link
    A method to generate new classes of random matrix ensembles is proposed. Random matrices from these ensembles are Lax matrices of classically integrable systems with a certain distribution of momenta and coordinates. The existence of an integrable structure permits to calculate the joint distribution of eigenvalues for these matrices analytically. Spectral statistics of these ensembles are quite unusual and in many cases give rigorously new examples of intermediate statistics

    Perturbation approach to multifractal dimensions for certain critical random matrix ensembles

    Full text link
    Fractal dimensions of eigenfunctions for various critical random matrix ensembles are investigated in perturbation series in the regimes of strong and weak multifractality. In both regimes we obtain expressions similar to those of the critical banded random matrix ensemble extensively discussed in the literature. For certain ensembles, the leading-order term for weak multifractality can be calculated within standard perturbation theory. For other models such a direct approach requires modifications which are briefly discussed. Our analytical formulas are in good agreement with numerical calculations.Comment: 28 pages, 7 figure

    Voltage-controlled tunneling anisotropic magneto-resistance of a ferromagnetic p++p^{++}-(Ga,Mn)As/n+n^{+}-GaAs Zener-Esaki diode

    Full text link
    The large tunneling anisotropic magneto-resistance of a single p++p^{++}-(Ga,Mn)As/n+n^{+}-GaAs Zener-Esaki diode is evidenced in a perpendicular magnetic field over a large temperature and voltage range. Under an applied bias, the tunnel junction transparency is modified, allowing to continuously tune anisotropic transport properties between the tunneling and the ohmic regimes. Furthermore, an asymmetric bias-dependence of the anisotropic tunneling magneto-resistance is also observed: a reverse bias highlights the full (Ga,Mn)As valence band states contribution, whereas a forward bias only probes part of the density of states and reveals opposite contributions from two subbands.Comment: 11 pages, 3 figure

    TEMPORAL PAYMENT ISSUES IN CONTINGENT VALUATION ANALYSIS

    Get PDF
    We analyze agent response to disparate payment schedules for protection of critical habitat units for the Seller sea lion in Alaska. The model allows for identification of implicit and explicit discount rates using information from a system of maximum likelihood equations. Testing is done using data for one, five, and fifteen year payment treatments.Research Methods/ Statistical Methods,

    Phonon-assisted tunneling in the quantum regime of Mn12-ac

    Full text link
    Longitudinal or transverse magnetic fields applied on a crystal of Mn12-ac allows to observe independent tunnel transitions between m=-S+p and m=S-n-p (n=6-10, p=0-2 in longitudinal field and n=p=0 in transverse field). We observe a smooth transition (in longitudinal) from coherent ground-state to thermally activated tunneling. Furthermore two ground-state relaxation regimes showing a crossover between quantum spin relaxation far from equilibrium and near equilibrium, when the environment destroys multimolecule correlations. Finally, we stress that the complete Hamiltonian of Mn12 should contain odd spin operators of low order

    Multifractal dimensions for all moments for certain critical random matrix ensembles in the strong multifractality regime

    Full text link
    We construct perturbation series for the q-th moment of eigenfunctions of various critical random matrix ensembles in the strong multifractality regime close to localization. Contrary to previous investigations, our results are valid in the region q<1/2. Our findings allow to verify, at first leading orders in the strong multifractality limit, the symmetry relation for anomalous fractal dimensions Delta(q)=Delta(1-q), recently conjectured for critical models where an analogue of the metal-insulator transition takes place. It is known that this relation is verified at leading order in the weak multifractality regime. Our results thus indicate that this symmetry holds in both limits of small and large coupling constant. For general values of the coupling constant we present careful numerical verifications of this symmetry relation for different critical random matrix ensembles. We also present an example of a system closely related to one of these critical ensembles, but where the symmetry relation, at least numerically, is not fulfilled.Comment: 12 pages, 12 figure

    Intermediate quantum maps for quantum computation

    Full text link
    We study quantum maps displaying spectral statistics intermediate between Poisson and Wigner-Dyson. It is shown that they can be simulated on a quantum computer with a small number of gates, and efficiently yield information about fidelity decay or spectral statistics. We study their matrix elements and entanglement production, and show that they converge with time to distributions which differ from random matrix predictions. A randomized version of these maps can be implemented even more economically, and yields pseudorandom operators with original properties, enabling for example to produce fractal random vectors. These algorithms are within reach of present-day quantum computers.Comment: 4 pages, 4 figures, research done at http://www.quantware.ups-tlse.fr

    Direct probing of band-structure Berry phase in diluted magnetic semiconductors

    Get PDF
    We report on experimental evidence of the Berry phase accumulated by the charge carrier wave function in single-domain nanowires made from a (Ga,Mn)(As,P) diluted ferromagnetic semiconductor layer. Its signature on the mesoscopic transport measurements is revealed as unusual patterns in the magnetoconductance, that are clearly distinguished from the universal conductance fluctuations. We show that these patterns appear in a magnetic field region where the magnetization rotates coherently and are related to a change in the band-structure Berry phase as the magnetization direction changes. They should be thus considered as a band structure Berry phase fingerprint of the effective magnetic monopoles in the momentum space. We argue that this is an efficient method to vary the band structure in a controlled way and to probe it directly. Hence, (Ga,Mn)As appears to be a very interesting test bench for new concepts based on this geometrical phase.Comment: 7 pages, 6 figure

    Quantum computing of delocalization in small-world networks

    Full text link
    We study a quantum small-world network with disorder and show that the system exhibits a delocalization transition. A quantum algorithm is built up which simulates the evolution operator of the model in a polynomial number of gates for exponential number of vertices in the network. The total computational gain is shown to depend on the parameters of the network and a larger than quadratic speed-up can be reached. We also investigate the robustness of the algorithm in presence of imperfections.Comment: 4 pages, 5 figures, research done at http://www.quantware.ups-tlse.fr
    corecore