224 research outputs found

    Naturally acquired antibody response to Plasmodium falciparum describes heterogeneity in transmission on islands in Lake Victoria.

    Get PDF
    As markers of exposure anti-malaria antibody responses can help characterise heterogeneity in malaria transmission. In the present study antibody responses to Plasmodium falciparum AMA-1, MSP-119 and CSP were measured with the aim to describe transmission patterns in meso-endemic settings in Lake Victoria. Two cross-sectional surveys were conducted in Lake Victoria in January and August 2012. The study area comprised of three settings: mainland (Ungoye), large island (Mfangano) and small islands (Takawiri, Kibuogi, Ngodhe). Individuals provided a finger-blood sample to assess malaria infection by microscopy and PCR. Antibody response to P. falciparum was determined in 4,112 individuals by ELISA using eluted dried blood from filter paper. The overall seroprevalence was 64.0% for AMA-1, 39.5% for MSP-119, and 12.9% for CSP. Between settings, seroprevalences for merozoite antigens were similar between Ungoye and Mfangano, but higher when compared to the small islands. For AMA-1, the seroconversion rates (SCRs) ranged from 0.121 (Ngodhe) to 0.202 (Ungoye), and were strongly correlated to parasite prevalence. We observed heterogeneity in serological indices across study sites in Lake Victoria. These data suggest that AMA-1 and MSP-119 sero-epidemiological analysis may provide further evidence in assessing variation in malaria exposure and evaluating malaria control efforts in high endemic area

    Coronavirus disease 2019 diagnostics: key to Africa's recovery

    Get PDF
    © Copyright 2021, Mary Ann Liebert, Inc., publishersWith the coronavirus disease of 2019 (COVID-19) becoming a full-blown outbreak in Africa, coupled with many other challenges faced on the African continent, it is apparent that Africa continues to need diagnostics to enable case identification and recovery to this and future challenges. With the slow vaccination rates across the continent, reliable diagnostic tests will be in demand, likely for years to come. Thus, access to reliable diagnostic tools to detect the severe acute respiratory syndrome of the coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, remain a critical pillar to monitor and contain new waves of COVID-19. Increasing the local capacity to manufacture and roll-out vaccines and decentralized COVID-19 testing are paramount for fighting the pandemic in Africa.SS is supported by an award from the Massachusetts Life Sciences Center Accelerating Coronavirus Testing Solutions (A.C.T.S). JG is funded by the African Academy of Sciences (Grants numbers GCA/MNCH/Round8/207/008 and SARSCov2-4-20-010) and the Royal Society, UK, Grant number FLR\R1\201314.info:eu-repo/semantics/publishedVersio

    Gendered farmer perceptions towards soil nutrition and willingness to pay for a cafetière-style filter system for in-situ soil testing: evidence from Central Kenya

    Get PDF
    Soil nutrition is a key pillar in agricultural productivity. However, point-of-need testing for soil nutrition is not readily available in resource-limited settings such as Kenya. We set out to study the perceived need for soil testing among farmers in this country. A group of 547 farmers from Murang'a and Kiambu counties in central Kenya were recruited through multi-stage sampling to help assess the perceptions and willingness to pay (WTP) toward a prototype technology for surveillance of in-situ soil nutrition. The technology is based on a cafetière-style filter system for extraction and a microfluidic paper-based analytical device (μPAD) for nutrient readout. We employed the double bounded choice contingent valuation method (CVM) to analyze the willingness of farmers to accept and pay for the prototype if the technology was available on the market. It was found that currently, only 1.5 % of farmers carry out soil testing. The high costs of analysis at testing centers, which are often far from the farmers, are among the main reasons contributing to the majority of farmers not testing their soils. The farmers surveyed were generally willing to make their soil data publicly accessible, especially to extension officers. CVM showed that uncontrolled WTP had a 94.24 % premium above KSh1,000 (6.60)incurredbyusingtheexistingrapidtestingmethod.Factoringthecontrolvariablesanddisaggregatingthemodelintogendercategories,thefindingsshowedthatyouth,women,andmenhadWTPvaluesofKSh1,612.53(6.60) incurred by using the existing rapid testing method. Factoring the control variables and disaggregating the model into gender categories, the findings showed that youth, women, and men had WTP values of KSh1,612.53 (10.75), KSh1,558.68 (10.39),andKSh1,504.83(10.39), and KSh1,504.83 (10.03), respectively, indicating that farmers can indeed pay for the convenience to test their soils in situ. Through the democratization of soil nutrition data, extension agents can enhance the improvement of agricultural productivity, which implies that farmers can commercialize their agricultural activities

    Mortality and Predictors of Mortality Among COVID-19 Patients in Kiambu County, Kenya:COVID

    Get PDF
    SARS-CoV-2 continues to circulate with new variants of uncertain transmissibility and virulence arising over time and resulting in varying morbidity and mortality between and within countries. This study aimed to identify the predictors of mortality among hospitalized COVID-19 patients across the first five waves of the pandemic. We conducted a retrospective cohort study at Tigoni Level 4 Hospital in Kenya. The study included patients admitted between June 2020 to August 2022 who tested positive for SARS-CoV-2. Sociodemographic and clinical data were abstracted from patient records at the time of admission and throughout their hospital stay. We employed Cox proportional hazard regression analysis to estimate the time to event (discharge or death) and identify predictors of mortality. Both time-varying and non-time-varying covariates were included in the models. A total of 1985 patients were admitted, of whom 557 (28%) died. The median hospital stay was 4 (1.0–8.0) days and 9 (5.0–13.0) days for patients who died and those who were discharged alive, respectively. Compared to patients admitted during wave 1, those admitted during the subsequent waves had high risk of death estimated at adjusted HR: 1.66 (95% CI 1.2, 2.54), 5.17 (95% CI 3.55, 7.53), 2.62 (95% CI 1.87, 3.67), and 2.17 (95% CI 1.51, 3.11) for waves 2, 3, 4, and 5, respectively. A proportion of patients presented with persistent chest pain, cough, and hypoxia and continued oxygen therapy for more than two months. In addition, patients who had persistent fever, hypoxia, cough, and fatigue had a significant mortality risk (adjusted HR: 3.00; 95% CI: 1.81–4.98; HR: 1.97; 95% CI: 1.73–2.26; HR: 1.47; 95% CI: 1.24–1.75; HR: 1.64; 95% CI: 1.05–2.54). Conversely, patients who had low oxygen saturation and received oxygen at admission had a 76% (HR: 0.24; 95% CI: 0.13–0.42) reduction in mortality risk and in addition patients whose treatment was altered had a 49% reduction in mortality risk (HR: 0.51; CI: 0.45–0.58). Our study highlights the benefits of oxygen therapy on the outcome of COVID-19 patients and justifies the need to increase investments in oxygen especially in low-and-middle-income countries. It also confirms the need to analyze the pandemic by the different waves

    Limited genetic variations of the Rh5-CyRPA-Ripr invasion complex in Plasmodium falciparum parasite population in selected malaria-endemic regions, Kenya

    Get PDF
    The invasion of human erythrocytes by Plasmodium falciparum merozoites requires interaction between parasite ligands and host receptors. Interaction of PfRh5-CyRPA-Ripr protein complex with basigin, an erythrocyte surface receptor, via PfRh5 is essential for erythrocyte invasion. Antibodies raised against each antigen component of the complex have demonstrated erythrocyte invasion inhibition, making these proteins potential blood-stage vaccine candidates. Genetic polymorphisms present a significant challenge in developing efficacious vaccines, leading to variant-specific immune responses. This study investigated the genetic variations of the PfRh5 complex proteins in P. falciparum isolates from Lake Victoria islands, Western Kenya. Here, twenty-nine microscopically confirmed P. falciparum field samples collected from islands in Lake Victoria between July 2014 and July 2016 were genotyped by whole genome sequencing, and results compared to sequences mined from the GenBank database, from a study conducted in Kilifi, as well as other sequences from the MalariaGEN repository. We analyzed the frequency of polymorphisms in the PfRh5 protein complex proteins, PfRh5, PfCyRPA, PfRipr, and PfP113, and their location mapped on the 3D protein complex structure. We identified a total of 58 variants in the PfRh5 protein complex. PfRh5 protein was the most polymorphic with 30 SNPs, while PfCyRPA was relatively conserved with 3 SNPs. The minor allele frequency of the SNPs ranged between 1.9% and 21.2%. Ten high-frequency alleles (>5%) were observed in PfRh5 at codons 147, 148, 277, 410, and 429 and in PfRipr at codons 190, 255, 259, and 1003. A SNP was located in protein-protein interaction region C203Y and F292V of PfRh5 and PfCyRPA, respectively. Put together, this study revealed low polymorphisms in the PfRh5 invasion complex in the Lake Victoria parasite population. However, the two mutations identified on the protein interaction regions prompts for investigation on their impacts on parasite invasion process to support the consideration of PfRh5 components as potential malaria vaccine candidates.This work was supported by the Royal Society of Tropical Medicine and Hygiene (RSTMH) small grants 2019 (HW). BK is an EDCTP Fellow under EDCTP2 programme supported by the European Union grant number TMA2020CDF-3203. JG received support from the African Academy of Sciences. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    COVID-19 vaccinology landscape in Africa

    Get PDF
    More than two years after the start of COVID-19 pandemic, Africa still lags behind in terms vaccine distribution. This highlights the predicament of Africa in terms of vaccine development, deployment, and sustainability, not only for COVID-19, but for other major infectious diseases that plague the continent. This opinion discusses the challenges Africa faces in its race to vaccinate its people, and offers recommendations on the way forward. Specifically, to get out of the ongoing vaccine shortage trap, Africa needs to diversify investment not only to COVID-19 but also other diseases that burden the population. The continent needs to increase its capacity to acquire vaccines more equitably, improve access to technologies to enable local manufacture of vaccines, increase awareness on vaccines both in rural and urban areas to significantly reduce disease incidence of COVID-19 and as well as other prevalent diseases on the African continent such as HIV and TB. Such efforts will go a long way to reduce the disease burden in Africa

    Combating antibiotic resistance using guidelines and enhanced stewardship in Kenya: a protocol for an implementation science approach

    Get PDF
    Introduction: Antimicrobial resistance (AMR) is a growing problem globally especially in Sub-Saharan Africa including Kenya. Without any intervention, lower/middle-income countries (LMICs) will be most affected due to already higher AMR levels compared with higher income countries and due to the far higher burden of diseases in the LMICs. Studies have consistently shown that inappropriate use of antimicrobials is the major driver of AMR. To address this challenge, hospitals are now implementing antibiotic stewardship programmes (ASPs), which have been shown to achieve reduced antibiotic usage, to decrease the prevalence of resistance and lead to significant economic benefits. However, the implementation of the guideline is highly dependent on the settings in which they are rolled out. This study, employing an implementation science approach, aims to address the knowledge gap in this area and provide critical data as well as practical experiences when using antibiotic guidelines and stewardship programmes in the public health sector. This will provide evidence of ASP performance and potentially contribute to the county, national and regional policies on antibiotics use. Methods and analysis: The study will be conducted in three geographically diverse regions, each represented by two hospitals. A baseline study on antibiotic usage, resistance and de-escalation, duration of hospital stay, rates of readmission and costs will be carried out in the preimplementation phase. The intervention, that is, the use of antibiotic guidelines and ASPs will be instituted for 18 months using a stepwise implementation strategy that will facilitate learning and continuous improvement of stewardship activities and updating of guidelines to reflect the evolving antibiotic needs. Ethics and dissemination: Approvals to carry out the study have been obtained from the National Commission for Science, Technology and Innovation and the Mount Kenya University Ethics Review Committee. The approvals from the two institutions were used to obtain permission to conduct the study at each of the participating hospitals. Study findings will be presented to policy stakeholders and published in peer-reviewed scientific journals. It is anticipated that the findings will inform the appropriate antibiotic use guidelines within our local context

    Malaria resurgence after significant reduction by mass drug administration on Ngodhe Island, Kenya

    Get PDF
    Although WHO recommends mass drug administration (MDA) for malaria elimination, further evidence is required for understanding the obstacles for the optimum implementation of MDA. Just before the long rain in 2016, two rounds of MDA with artemisinin/piperaquine (Artequick) and low-dose primaquine were conducted with a 35-day interval for the entire population of Ngodhe Island (~500 inhabitants) in Lake Victoria, Kenya, which is surrounded by areas with moderate and high transmission. With approximately 90% compliance, Plasmodium prevalence decreased from 3% to 0% by microscopy and from 10% to 2% by PCR. However, prevalence rebounded to 9% by PCR two months after conclusion of MDA. Besides the remained local transmission, parasite importation caused by human movement likely contributed to the resurgence. Analyses of 419 arrivals to Ngodhe between July 2016 and September 2017 revealed Plasmodium prevalence of 4.6% and 16.0% by microscopy and PCR, respectively. Risk factors for infection among arrivals included age (0 to 5 and 11 to 15 years), and travelers from Siaya County, located to the north of Ngodhe Island. Parasite importation caused by human movement is one of major obstacles to sustain malaria elimination, suggesting the importance of cross-regional initiatives together with local vector control

    COVID-19 vaccinology landscape in Africa

    Get PDF
    More than two years after the start of COVID-19 pandemic, Africa still lags behind in terms vaccine distribution. This highlights the predicament of Africa in terms of vaccine development, deployment, and sustainability, not only for COVID-19, but for other major infectious diseases that plague the continent. This opinion discusses the challenges Africa faces in its race to vaccinate its people, and offers recommendations on the way forward. Specifically, to get out of the ongoing vaccine shortage trap, Africa needs to diversify investment not only to COVID-19 but also other diseases that burden the population. The continent needs to increase its capacity to acquire vaccines more equitably, improve access to technologies to enable local manufacture of vaccines, increase awareness on vaccines both in rural and urban areas to significantly reduce disease incidence of COVID-19 and as well as other prevalent diseases on the African continent such as HIV and TB. Such efforts will go a long way to reduce the disease burden in Africa.The Massachusetts Life Sciences Center Accelerating Coronavirus Testing Solutions, Nina Ireland Program for Lung Health, the Chan Zuckerberg Biohub Initiative and Africa Academy of Sciences funding for COVID-19 Research & Development goals for Africa.https://www.frontiersin.org/journals/immunologyam2023BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Development and clinical validation of Iso-IMRS: a novel diagnostic assay for P. falciparum malaria

    Get PDF
    In many countries targeting malaria elimination, persistent malaria infections can have parasite loads significantly below the lower limit of detection (LLOD) of standard diagnostic techniques, making them difficult to identify and treat. The most sensitive diagnostic methods involve amplification and detection of Plasmodium DNA by polymerase chain reaction (PCR), which requires expensive thermal cycling equipment and is difficult to deploy in resource-limited settings. Isothermal DNA amplification assays have been developed, but they require complex primer design, resulting in high nonspecific amplification, and show a decrease in sensitivity than PCR methods. Here, we have used a computational approach to design a novel isothermal amplification assay with a simple primer design to amplify P. falciparum DNA with analytical sensitivity comparable to PCR. We have identified short DNA sequences repeated throughout the parasite genome to be used as primers for DNA amplification and demonstrated that these primers can be used, without modification, to isothermally amplify P. falciparum parasite DNA via strand displacement amplification. Our novel assay shows a LLOD of ∼1 parasite/μL within a 30 min amplification time. The assay was demonstrated with clinical samples using patient blood and saliva. We further characterized the assay using direct amplicon next-generation sequencing and modified the assay to work with a visual readout. The technique developed here achieves similar analytical sensitivity to current gold standard PCR assays requiring a fraction of time and resources for PCR. This highly sensitive isothermal assay can be more easily adapted to field settings, making it a potentially useful tool for malaria elimination.Accepted manuscrip
    corecore