154 research outputs found
Modeling and simulation of Li-Ion conduction in POLY(Ethylene Oxide
Prof. Moshe Israeli passed away on Feburary 18, 2007. This paper is dedicated to his memory Polyethylene oxide (PEO) containing a lithium salt (e.g. LiI) serves as a solid polymer electrolyte (SPE) in thin-film batteries and its ionic conductivity is a key parameter of their performance. We model and simulate Li + ion conduction in a single PEO molecule. Our simplified stochastic model of ionic motion is based on an analogy between protein channels of biological membranes that conduct Na +, K +, and other ions, and the PEO helical chain that conducts Li + ions. In contrast with protein channels and salt solutions, the PEO is both the channel and the solvent for the lithium salt (e.g., LiI). The mobile ions are treated as charged spherical Brownian particles. We simulate Smoluchowski dynamics in channels with a radius of ca 0.1nm and study the effect of stretching and temperature on ion conductivity. We assume that each helix (molecule) forms a random angle with the axis between these electrodes and the polymeric film is composed of many uniformly distributed oriented boxes that include molecules with the same direction. We further assume that mechanical stretching aligns the molecular structures in each box along the axis of stretching (intra-box alignment). Our model thus predicts the PEO conductivity as a function of the stretching, the salt concentration and the temperature. The computed enhancement of the ionic conductivity in the stretch direction is in good agreement with experimental results. The simulation results are also in qualitative agreement with recent theoretical and experimental results.
The Practice of Mentoring as a Tool of Educational Work at the Ural Technical Institute of Communications and Information Science (Branch) FGBOU in “SibGUTI”
Статья посвящена описанию инновационного опыта наставничества в учебном заведении. Приводится опыт создания и применения в воспитательной работе программы наставничества как технологии обеспечения адаптации, формирования мировоззренческих установок, социальной безопасности молодежи.The article is devoted to describing the innovative experience of mentoring in an educational institution. The experience of creating and applying a mentoring program in educational work as a technology for ensuring adaptation, the formation of ideological attitudes, and the social security of young people is presented
The odds of duplicate gene persistence after polyploidization
Background: Gene duplication is an important biological phenomenon associated with genomic redundancy,degeneration, specialization, innovation, and speciation. After duplication, both copies continue functioning when natural selection favors duplicated protein function or expression, or when mutations make them functionally distinct before one copy is silenced. Results: Here we quantify the degree to which genetic parameters related to gene expression, molecular evolution, and gene structure in a diploid frog - Silurana tropicalis - influence the odds of functional persistence of orthologous duplicate genes in a closely related tetraploid species - Xenopus laevis. Using public databases and 454 pyrosequencing, we obtained genetic and expression data from S. tropicalis orthologs of 3,387 X. laevis paralogs and 4,746 X. laevis singletons - the most comprehensive dataset for African clawed frogs yet analyzed. Using logistic regression, we demonstrate that the most important predictors of the odds of duplicate gene persistence in the tetraploid species are the total gene expression level and evenness of expression across tissues and development in the diploid species. Slow protein evolution and information density (fewer exons, shorter introns) in the diploid are also positively correlated with duplicate gene persistence in the tetraploid. Conclusions: Our findings suggest that a combination of factors contribute to duplicate gene persistence following whole genome duplication, but that the total expression level and evenness of expression across tissues and through development before duplication are most important. We speculate that these parameters are useful predictors of duplicate gene longevity after whole genome duplication in other taxa
Reaction Time and Visible White Matter Lesions in Subcortical Ischemic Vascular Cognitive Impairment
Slowed behavioral reaction time is associated with pathological brain changes, including white matter lesions, the common clinical characteristic of subcortical ischemic vascular cognitive impairment (SIVCI). In the present study, reaction time (RT) employing Trails B of the Trail Making Test, with responses capped at 300 s, was investigated in SIVCI (n = 27) compared to cognitively healthy aging (CH) (n = 26). RT was significantly slowed in SIVCI compared to CH (Cohen’s d effect size = 1.26). Furthermore, failure to complete Trails B within 300 s was also a characteristic of SIVCI although some ostensibly cognitively healthy older adults also failed to complete within this time limit. Within the SIVCI group, RT did not differ significantly with respect to whether the patients were classified as having moderate/severe or mild, periventricular white matter changes visible on their diagnostic CT/MRI scans. This, together with the high degree of overlap in RT between the two SIVCI subgroups, raises the possibility that using visible ratings scales in isolation may lead to the underestimation of disease level
The TA Framework: Designing Real-time Teaching Augmentation for K-12 Classrooms
Recently, the HCI community has seen increased interest in the design of
teaching augmentation (TA): tools that extend and complement teachers'
pedagogical abilities during ongoing classroom activities. Examples of TA
systems are emerging across multiple disciplines, taking various forms: e.g.,
ambient displays, wearables, or learning analytics dashboards. However, these
diverse examples have not been analyzed together to derive more fundamental
insights into the design of teaching augmentation. Addressing this opportunity,
we broadly synthesize existing cases to propose the TA framework. Our framework
specifies a rich design space in five dimensions, to support the design and
analysis of teaching augmentation. We contextualize the framework using
existing designs cases, to surface underlying design trade-offs: for example,
balancing actionability of presented information with teachers' needs for
professional autonomy, or balancing unobtrusiveness with informativeness in the
design of TA systems. Applying the TA framework, we identify opportunities for
future research and design.Comment: to be published in Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems, 17 pages, 10 figure
IL-6 Stabilizes Twist and Enhances Tumor Cell Motility in Head and Neck Cancer Cells through Activation of Casein Kinase 2
BACKGROUND: Squamous cell carcinoma of the head and neck (SCCHN) is the seventh most common cancer worldwide. Unfortunately, the survival of patients with SCCHN has not improved in the last 40 years, and thus new targets for therapy are needed. Recently, elevations in serum level of interleukin 6 (IL-6) and expression of Twist in tumor samples were found to be associated with poor clinical outcomes in multiple types of cancer, including SCCHN. Although Twist has been proposed as a master regulator of epithelial-mesenchymal transition and metastasis in cancers, the mechanisms by which Twist levels are regulated post-translationally are not completely understood. Tumor progression is characterized by the involvement of cytokines and growth factors and Twist induction has been connected with a number of these signaling pathways including IL-6. Since many of the effects of IL-6 are mediated through activation of protein phosphorylation cascades, this implies that Twist expression must be under a tight control at the post-translational level in order to respond in a timely manner to external stimuli. METHODOLOGY/PRINCIPAL FINDINGS: Our data show that IL-6 increases Twist expression via a transcription-independent mechanism in many SCCHN cell lines. Further investigation revealed that IL-6 stabilizes Twist in SCCHN cell lines through casein kinase 2 (CK2) phosphorylation of Twist residues S18 and S20, and that this phosphorylation inhibits degradation of Twist. Twist phosphorylation not only increases its stability but also enhances cell motility. Thus, post-translational modulation of Twist contributes to its tumor-promoting properties. CONCLUSIONS/SIGNIFICANCE: Our study shows Twist expression can be regulated at the post-translational level through phosphorylation by CK2, which increases Twist stability in response to IL-6 stimulation. Our findings not only provide novel mechanistic insights into post-translational regulation of Twist but also suggest that CK2 may be a viable therapeutic target in SCCHN
Adaption of Seasonal H1N1 Influenza Virus in Mice
The experimental infection of a mouse lung with influenza A virus has proven to be an invaluable model for studying the mechanisms of viral adaptation and virulence. The mouse adaption of human influenza A virus can result in mutations in the HA and other proteins, which is associated with increased virulence in mouse lungs. In this study, a mouse-adapted seasonal H1N1 virus was obtained through serial lung-to-lung passages and had significantly increased virulence and pathogenicity in mice. Genetic analysis indicated that the increased virulence of the mouse-adapted virus was attributed to incremental acquisition of three mutations in the HA protein (T89I, N125T, and D221G). However, the mouse adaption of influenza A virus did not change the specificity and affinity of receptor binding and the pH-dependent membrane fusion of HA, as well as the in vitro replication in MDCK cells. Notably, infection with the mouse adapted virus induced severe lymphopenia and modulated cytokine and chemokine responses in mice. Apparently, mouse adaption of human influenza A virus may change the ability to replicate in mouse lungs, which induces strong immune responses and inflammation in mice. Therefore, our findings may provide new insights into understanding the mechanisms underlying the mouse adaption and pathogenicity of highly virulent influenza viruses
Nicotinic Receptor Gene CHRNA4 Interacts with Processing Load in Attention
Background: Pharmacological studies suggest that cholinergic neurotransmission mediates increases in attentional effort in response to high processing load during attention demanding tasks [1]. Methodology/Principal Findings: In the present study we tested whether individual variation in CHRNA4, a gene coding for a subcomponent in a4b2 nicotinic receptors in the human brain, interacted with processing load in multiple-object tracking (MOT) and visual search (VS). We hypothesized that the impact of genotype would increase with greater processing load in the MOT task. Similarly, we predicted that genotype would influence performance under high but not low load in the VS task. Two hundred and two healthy persons (age range = 39–77, Mean = 57.5, SD = 9.4) performed the MOT task in which twelve identical circular objects moved about the display in an independent and unpredictable manner. Two to six objects were designated as targets and the remaining objects were distracters. The same observers also performed a visual search for a target letter (i.e. X or Z) presented together with five non-targets while ignoring centrally presented distracters (i.e. X, Z, or L). Targets differed from non-targets by a unique feature in the low load condition, whereas they shared features in the high load condition. CHRNA4 genotype interacted with processing load in both tasks. Homozygotes for the T allele (N = 62) had better tracking capacity in the MOT task and identified targets faster in the high load trials of the VS task. Conclusion: The results support the hypothesis that the cholinergic system modulates attentional effort, and that commo
Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes
Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss
- …
