1,324 research outputs found

    Programming multi-level quantum gates in disordered computing reservoirs via machine learning and TensorFlow

    Get PDF
    Novel machine learning computational tools open new perspectives for quantum information systems. Here we adopt the open-source programming library TensorFlow to design multi-level quantum gates including a computing reservoir represented by a random unitary matrix. In optics, the reservoir is a disordered medium or a multi-modal fiber. We show that trainable operators at the input and the readout enable one to realize multi-level gates. We study various qudit gates, including the scaling properties of the algorithms with the size of the reservoir. Despite an initial low slop learning stage, TensorFlow turns out to be an extremely versatile resource for designing gates with complex media, including different models that use spatial light modulators with quantized modulation levels.Comment: Added a new section and a new figure about implementation of the gates by a single spatial light modulator. 9 pages and 4 figure

    Sine-Gordon soliton as a model for Hawking radiation of moving black holes and quantum soliton evaporation

    Get PDF
    The intriguing connection between black holes' evaporation and physics of solitons is opening novel roads to finding observable phenomena. It is known from the inverse scattering transform that velocity is a fundamental parameter in solitons theory. Taking this into account, the study of Haw\-king radiation by a moving soliton gets a growing relevance. However, a theoretical context for the description of this phenomenon is still lacking. Here, we adopt a soliton geometrization technique to study the quantum emission of a moving soliton in a one-dimensional model. Representing a black hole by the one soliton solution of the sine-Gordon equation, we consider Haw\-king emission spectra of a quantized massless scalar field on the soliton-induced metric. We study the relation between the soliton velocity and the black hole temperature. Our results address a new scenario in the detection of new physics in the quantum gravity panorama.Comment: 8 pages, 4 figure

    Physical realization of the Glauber quantum oscillator

    Get PDF
    More than thirty years ago Glauber suggested that the link between the reversible microscopic and the irreversible macroscopic world can be formulated in physical terms through an inverted harmonic oscillator describing quantum amplifiers. Further theoretical studies have shown that the paradigm for irreversibility is indeed the reversed harmonic oscillator. As outlined by Glauber, providing experimental evidence of these idealized physical systems could open the way to a variety of fundamental studies, for example to simulate irreversible quantum dynamics and explain the arrow of time. However, supporting experimental evidence of reversed quantized oscillators is lacking. We report the direct observation of exploding n = 0 and n = 2 discrete states and Γ0 and Γ2 quantized decay rates of a reversed harmonic oscillator generated by an optical photothermal nonlinearity. Our results give experimental validation to the main prediction of irreversible quantum mechanics, that is, the existence of states with quantized decay rates. Our results also provide a novel perspective to optical shock-waves, potentially useful for applications as lasers, optical amplifiers, white-light and X-ray generation

    A Soluble Phase Field Model

    Get PDF
    The kinetics of an initially undercooled solid-liquid melt is studied by means of a generalized Phase Field model, which describes the dynamics of an ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to a conserved field (e.g. thermal field). After obtaining the rules governing the evolution process, by means of analytical arguments, we present a discussion of the asymptotic time-dependent solutions. The full solutions of the exact self-consistent equations for the model are also obtained and compared with computer simulation results. In addition, in order to check the validity of the present model we confronted its predictions against those of the standard Phase field model and found reasonable agreement. Interestingly, we find that the system relaxes towards a mixed phase, depending on the average value of the conserved field, i.e. on the initial condition. Such a phase is characterized by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review

    Adiabatic evolution on a spatial-photonic Ising machine

    Get PDF
    Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware.Novel optical platforms, knownas coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated.Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity.Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and classical annealing methods but enforced by optical vector-matrix multiplications and scalable photonic technology
    corecore