476 research outputs found
Bioinspired nanocomposites: Ordered 2D materials within a 3D lattice
Advanced composites are used in a variety of industrial applications and therefore attract much scientific interest. We recently developed a novel carbon‐based nanocomposite via incorporation of graphene oxide (GO) into the crystal lattice of single crystals of calcite [1]. Incorporation of a 2D organic material into single‐crystal lattices has never before been reported. To characterize the resulting nanocomposites, high‐resolution synchrotron powder X‐ray diffraction, electron microscopy, transmission electron microscopy, fluorescence microscopy and nanoindentation tests are employed. A detailed analysis reveals a layered distribution of GO sheets incorporated within the calcite host (Fig. 1). Moreover, the optical and mechanical properties of the calcite host are altered when a carbon‐based nanomaterial is introduced into its lattice. Compared to pure calcite, GO/calcite composite crystals exhibit lower elastic modulus and higher hardness. The results of this study show that the incorporation of a 2D material within a 3D crystal lattice is not only feasible but also can lead to the formation of hybrid crystals exhibiting new properties.
Please click Additional Files below to see the full abstract
Role of CaCO3° neutral pair in calcium carbonate crystallization
The molecular structure of the units that get incorporated into the nuclei of the crystalline phase and sustain their growth is a fundamental issue in the pathway from a supersaturated solution to the formation of crystals. Using a fluorescent dye we have recorded the variation of the pH value in time along a gel where CaCl2 and NaHCO3 counter-diffuse to crystallize CaCO3. The same pH–space–time distribution maps were also computationally obtained using a chemical speciation code (phreeqc). Using data arising from this model we investigated the space-time evolution of the activity of the single species (ions and ion pairs) involved in the crystallization process. Our combined results suggest that, whatever the pathway from solution to crystals, the neutral pair CaCO3° is a key species in the CaCO3 precipitation system.European Research Council (European Union’s Seventh Framework Programme (FP7/2007-2013) grant agreement no 340863, and Spanish MINECO grants MAT2014-60533-R
and CGL2010-16882 cofounded with FEDERPeer reviewe
Persistent immune stimulation exacerbates genetically driven myeloproliferative disorders via stromal remodeling
Systemic immune stimulation has been associated with increased risk of myeloid malignancies, but the pathogenic link is unknown. We demonstrate in animal models that experimental systemic immune activation alters the bone marrow stromal microenvironment, disarranging extracellular matrix (ECM) microarchitecture, with downregulation of secreted protein acidic and rich in cysteine (SPARC) and collagen-I and induction of complement activation. These changes were accompanied by a decrease in Treg frequency and by an increase in activated effector T cells. Under these conditions, hematopoietic precursors harboring nucleophosmin-1 (NPM1) mutation generated myeloid cells unfit for normal hematopoiesis but prone to immunogenic death, leading to neutrophil extracellular trap (NET) formation. NET fostered the progression of the indolent NPM1-driven myeloproliferation toward an exacerbated and proliferative dysplastic phenotype. Enrichment in NET structures was found in the bone marrow of patients with autoimmune disorders and in NPM1-mutated acute myelogenous leukemia (AML) patients. Genes involved in NET formation in the animal model were used to design a NET-related inflammatory gene signature for human myeloid malignancies. This signature identified two AML subsets with different genetic complexity and different enrichment in NPM1 mutation and predicted the response to immunomodulatory drugs. Our results indicate that stromal/ECM changes and priming of bone marrow NETosis by systemic inflammatory conditions can complement genetic and epigenetic events towards the development and progression of myeloid malignancy
β-Chitin nano-Fibrils Self-Assembly in Aqueous Environments
Chitin is one of the most studied biopolymers but the understanding of how it assembles from molecules to microfibers is still limited. Organisms are able to assemble chitin with precise control over polymorphism, texture, and final morphology. The produced hierarchical structure leads to materials with outstanding mechanical properties. In this study, the self-assembly in aqueous solutions of \u3b2-chitin nanofibrils, as far as possible similar to their native state, is investigated. These nanofibrils increase their tendency to self-assemble in fibers, up to millimetric length and 4810 \u3bcm thickness, with the pH increasing from 3 to 8, forming loosely organized bundles as observed using cryo-transmission electron microscopy. The knowledge from this study contributes to the understanding of the self-assembly process that follows chitin once extruded from cells in living organisms. Moreover, it describes a model system which can be used to investigate how other biomolecules can affect the self-assembly of chitin nanofibrils
Near Normalization of Metabolic and Functional Features of the Central Nervous System in Type 1 Diabetic Patients With End-Stage Renal Disease After Kidney-Pancreas Transplantation
OBJECTIVE The pathogenesis of brain disorders in type 1 diabetes (T1D) is multifactorial and involves the adverse effects of chronic hyperglycemia and of recurrent hypoglycemia. Kidney-pancreas (KP), but not kidney alone (KD), transplantation is associated with sustained normoglycemia, improvement in quality of life, and reduction of morbidity/mortality in diabetic patients with end-stage renal disease (ESRD). RESEARCH DESIGN AND METHODS The aim of our study was to evaluate with magnetic resonance imaging and nuclear magnetic resonance spectroscopy (1H MRS) the cerebral morphology and metabolism of 15 ESRD plus T1D patients, 23 patients with ESRD plus T1D after KD (n = 9) and KP (n = 14) transplantation, and 8 age-matched control subjects. RESULTS Magnetic resonance imaging showed a higher prevalence of cerebrovascular disease in ESRD plus T1D patients (53% [95% CI 36–69]) compared with healthy subjects (25% [3–6], P = 0.04). Brain 1H MRS showed lower levels of N-acetyl aspartate (NAA)-to-choline ratio in ESRD plus T1D, KD, and KP patients compared with control subjects (control subjects vs. all, P < 0.05) and of NAA-to-creatine ratio in ESRD plus T1D compared with KP and control subjects (ESRD plus T1D vs. control and KP subjects, P ≤ 0.01). The evaluation of the most common scores of psychological and neuropsychological function showed a generally better intellectual profile in control and KP subjects compared with ESRD plus T1D and KD patients. CONCLUSIONS Diabetes and ESRD are associated with a precocious form of brain impairment, chronic cerebrovascular disease, and cognitive decline. In KP-transplanted patients, most of these features appeared to be near normalized after a 5-year follow-up period of sustained normoglycemia
Tunable Oxidized-Chitin Hydrogels with Customizable Mechanical Properties by Metal or Hydrogen Ion Exposure
This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline β-chitin fibrils (β-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction conditions were also tested for α-chitin, which showed a lower reactivity and a slower reaction kinetic. After that, a set of hydrogels was synthesized from β-chitOx 1 wt.% at pH 9, inducing the gelation
by sonication. These hydrogels were exposed to different environments, such as different amounts of Ca2+, Na+ or Mg2+ solutions, buffered environments such as pH 9, PBS, pH 5, and pH 1, and pure water. These hydrogels were characterized using rheology, XRPD, SEM, and FT-IR. The notable feature of these hydrogels is their ability to be strengthened through cation chelation, being metal
cations or hydrogen ions, with a five- to tenfold increase in their storage modulus (G’). The ions were theorized to alter the hydrogen-bonding network of the polymer and intercalate in chitin’s crystal structure along the a-axis. On the other hand, the hydrogel dissolved at pH 9 and pure water. These bio-based tunable hydrogels represent an intriguing material suitable for biomedical applications
Experimental Correlation between Apparent pKa and Gelation Propensity in Amphiphilic Hydrogelators Derived from l-Dopa
We report the gelation propensity of three gelators derived from l-dihydroxyphenylalanine (l-Dopa), where the amino group is derivatized with three different fatty acids (lauric acid, palmitic acid, and azelaic acid). The long aliphatic side chains should introduce additional van der Waals interactions among the molecules, contributing to the self-assembly process. The hydrogels have been prepared with the pH change method, and both the hydrogels and the corresponding aerogels have been analyzed using several techniques. In any case, Lau-Dopa provides stronger hydrogels compared with the other gelators. This property may be ascribed to its tendency to efficiently form supramolecular beta-sheet structures, as outlined by the ECD, IR, and SEM analyses. Moreover, the preliminary measurement of the apparent pK(a) displays for Lau-Dopa two plateaux, as previously observed for, one at about pH 12 and a second one at pH 7.5. Thus, its pK(a) results in two apparent pK(a) shifts of similar to 8.5 and similar to 4 pH units above the theoretical pK(a), as a consequence of a multistep self-assembly pathway that correlates, in the final beta-sheet-based hydrogel, with a high degree of order and stability
Different skeletal protein toolkits achieve similar structure and performance in the tropical coral Stylophora pistillata and the temperate Oculina patagonica
Stony corals (order: Scleractinia) differ in growth form and structure. While stony corals have gained the ability to form their aragonite skeleton once in their evolution, the suite of proteins involved in skeletogenesis is different for different coral species. This led to the conclusion that the organic portion of their skeleton can undergo rapid evolutionary changes by independently evolving new biomineralization-related proteins. Here, we used liquid chromatography-tandem mass spectrometry to sequence skeletogenic proteins extracted from the encrusting temperate coral Oculina patagonica. We compare it to the previously published skeletal proteome of the branching subtropical corals Stylophora pistillata as both are regarded as highly resilient to environmental changes. We further characterized the skeletal organic matrix (OM) composition of both taxa and tested their effects on the mineral formation using a series of overgrowth experiments on calcite seeds. We found that each species utilizes a different set of proteins containing different amino acid compositions and achieve a different morphology modification capacity on calcite overgrowth. Our results further support the hypothesis that the different coral taxa utilize a species-specific protein set comprised of independent gene co-option to construct their own unique organic matrix framework. While the protein set differs between species, the specific predicted roles of the whole set appear to underline similar functional roles. They include assisting in forming the extracellular matrix, nucleation of the mineral and cell signaling. Nevertheless, the different composition might be the reason for the varying organization of the mineral growth in the presence of a particular skeletal OM, ultimately forming their distinct morphologies
- …
