1,708 research outputs found

    Adaptive Probabilistic Flooding for Multipath Routing

    Full text link
    In this work, we develop a distributed source routing algorithm for topology discovery suitable for ISP transport networks, that is however inspired by opportunistic algorithms used in ad hoc wireless networks. We propose a plug-and-play control plane, able to find multiple paths toward the same destination, and introduce a novel algorithm, called adaptive probabilistic flooding, to achieve this goal. By keeping a small amount of state in routers taking part in the discovery process, our technique significantly limits the amount of control messages exchanged with flooding -- and, at the same time, it only minimally affects the quality of the discovered multiple path with respect to the optimal solution. Simple analytical bounds, confirmed by results gathered with extensive simulation on four realistic topologies, show our approach to be of high practical interest.Comment: 6 pages, 6 figure

    Effective thermal dynamics following a quantum quench in a spin chain

    Full text link
    We study the nonequilibrium dynamics of the Quantum Ising Model following an abrupt quench of the transverse field. We focus on the on-site autocorrelation function of the order parameter, and extract the phase coherence time τQϕ\tau^{\phi}_Q from its asymptotic behavior. We show that the initial state determines τQϕ\tau^{\phi}_Q only through an effective temperature set by its energy and the final Hamiltonian. Moreover, we observe that the dependence of τQϕ\tau^{\phi}_Q on the effective temperature fairly agrees with that obtained in thermal equilibrium as a function of the equilibrium temperature.Comment: 4 pages, 4 figures. Published versio

    Matrix Product State representation for Slater Determinants and Configuration Interaction States

    Full text link
    Slater determinants are product states of filled quantum fermionic orbitals. When they are expressed in a configuration space basis chosen a priori, their entanglement is bound and controlled. This suggests that an exact representation of Slater determinants as finitely-correlated states is possible. In this paper we analyze this issue and provide an exact Matrix Product representation for Slater determinant states. We also argue possible meaningful extensions that embed more complex configuration interaction states into the description.Comment: 16 pages, 4 figures. Published in IJMPB, focus issue on "Classical vs. Quantum Correlations in Composite Systems

    Long time dynamics following a quench in an integrable quantum spin chain: local versus non-local operators and effective thermal behavior

    Full text link
    We study the dynamics of the quantum Ising chain following a zero-temperature quench of the transverse field strength. Focusing on the behavior of two-point spin correlation functions, we show that the correlators of the order parameter display an effective asymptotic thermal behavior, i.e., they decay exponentially to zero, with a phase coherence rate and a correlation length dictated by the equilibrium law with an effective temperature set by the energy of the initial state. On the contrary, the two-point correlation functions of the transverse magnetization or the density-of-kinks operator decay as a power-law and do not exhibit thermal behavior. We argue that the different behavior is linked to the locality of the corresponding operator with respect to the quasi-particles of the model: non-local operators, such as the order parameter, behave thermally, while local ones do not. We study which features of the two-point correlators are a consequence of the integrability of the model by analizing their robustness with respect to a sufficiently strong integrability-breaking term.Comment: 18 pages, 11 figures, published version. Extensive changes, one author adde

    Adiabatic dynamics in a spin-1 chain with uniaxial single-spin anisotropy

    Full text link
    We study the adiabatic quantum dynamics of an anisotropic spin-1 XY chain across a second order quantum phase transition. The system is driven out of equilibrium by performing a quench on the uniaxial single-spin anisotropy, that is supposed to vary linearly in time. We show that, for sufficiently large system sizes, the excess energy after the quench admits a non trivial scaling behavior that is not predictable by standard Kibble-Zurek arguments for isolated critical points or extended critical regions. This emerges from a competing effect of many accessible low-lying excited states, inside the whole continuous line of critical points.Comment: 17 pages, 8 figures, published versio

    Many-body localization and thermalization in the full probability distribution function of observables

    Get PDF
    We investigate the relation between thermalization following a quantum quench and many-body localization in quasiparticle space in terms of the long-time full distribution function of physical observables. In particular, expanding on our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)], we focus on the long-time behavior of an integrable XXZ chain subject to an integrability-breaking perturbation. After a characterization of the breaking of integrability and the associated localization/delocalization transition using the level spacing statistics and the properties of the eigenstates, we study the effect of integrability-breaking on the asymptotic state after a quantum quench of the anisotropy parameter, looking at the behavior of the full probability distribution of the transverse and longitudinal magnetization of a subsystem. We compare the resulting distributions with those obtained in equilibrium at an effective temperature set by the initial energy. We find that, while the long time distribution functions appear to always agree {\it qualitatively} with the equilibrium ones, {\it quantitative} agreement is obtained only when integrability is fully broken and the relevant eigenstates are diffusive in quasi-particle space.Comment: 18 pages, 11 figure

    Produzione, qualità e analisi della filiera produttiva del lino da fibra in Italia

    Get PDF
    Fibre flax (Linum usitatissimum L.) is disappeared from the ltalian crop systems, while the textile industry has reached a leading position. The reintroduction of the crop is than potentially promising but the crop techniques and the production processes have to be set up. In 12 environments: crop development and growth, cultivar response, straw, fibre and seed yields, and fibre quality were analysed in the 1992-98 period. The data pointed out crop cycles of 176 and 110 d for the autumn and the spring sowing time respectively, corresponding to 1125 and 990°C d cumulated growing degree. Straw yield at pulling was on average of 6.3 t ha-1, with relevant differences among years and environrnents. Early maturity cultivar yielded more in the less favourable sites. N fertilization was occasionally relevant, and a generally distributions of 60 kg N ha-1 was the more effective. In the Mediterranean environments, with the autumn, sowing flax was more productive and the yield steady. The long fibre ratio was often low (10-13%) and the quality uneven because of the insufficient cleanliness due to retting difficulties. Occasionally, the value of the fibre was affected by the insufficient stem length. In the less dense crop, the seed yield was on average 0.9 t ha-1. Such productions were similar to those assessed for the more dense crop. In conclusion: because of the complexity of the interactions among the crop growth, the yield, the retting process and the fibre quality flax reintroduction is doubtful. In the production processes retting seems to be the crucial phase. Il lino da fibra (Linum usitatissimum L.) è da tempo assente negli ordinamenti colturali italiani, mentre è assai importante l'industria di filatura. La reintroduzione della coltura appare quindi potenzialmente promettente, ma richiede la messa a punto dell'agrotecnica e della filiera produttiva. Nel periodo 1992-1998 in 12 ambienti sono stati esaminati: lo sviluppo e la crescita della coltura, l'adattamento di cultivar, la produzione di paglia, fibra e seme, la resa alla stigliatura, la qualità della fibra. I dati raccolti evidenziano cicli colturali in media di 176 e 110 d rispettivamente per le semine autunnali (ambienti del centro-sud) e vemino-primaverili; corrispondenti a somme termiche di 1125 e 990°C d. La produzione di paglia alla estirpatura è stata in media di 6.3 t ha-1 con valori assai variabili tra annate e ambienti. Le varietà a ciclo corto sono apparse migliori nelle condizioni difficili. L'effetto della concimazione azotata è apparsa talvolta rilevante e comunque con dosi ottimali prossime a 60 kg ha-1 di N. Negli ambienti del centro-sud le semine autunnali si sono dimostrate spesso le più interessanti e sicure. La resa in fibra lunga è stata bassa (10-13%) e la qualità variabile per la scarsa pulizia dovuta alle difficoltà di macerazione. La modesta lunghezza tecnica dello stelo sovente riduce il valore del prodotto. In coltura rada, la produzione di seme è variata da 0.5 a 1.5 t ha-1; tali valori non si sono discostati in modo apprezzabile da quelli ottenuti in coltura fitta. In conclusione, la diffusione del lino appare problematica per le complesse interazioni tra la produzione, il processo di macerazione e la qualità della fibra. Soprattutto la macerazione appare il passaggio chiave

    Defining brain–machine interface applications by matching interface performance with device requirements

    Get PDF
    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications. © 2007 Elsevier B.V. All rights reserved
    corecore