1,708 research outputs found
Adaptive Probabilistic Flooding for Multipath Routing
In this work, we develop a distributed source routing algorithm for topology
discovery suitable for ISP transport networks, that is however inspired by
opportunistic algorithms used in ad hoc wireless networks. We propose a
plug-and-play control plane, able to find multiple paths toward the same
destination, and introduce a novel algorithm, called adaptive probabilistic
flooding, to achieve this goal. By keeping a small amount of state in routers
taking part in the discovery process, our technique significantly limits the
amount of control messages exchanged with flooding -- and, at the same time, it
only minimally affects the quality of the discovered multiple path with respect
to the optimal solution. Simple analytical bounds, confirmed by results
gathered with extensive simulation on four realistic topologies, show our
approach to be of high practical interest.Comment: 6 pages, 6 figure
Effective thermal dynamics following a quantum quench in a spin chain
We study the nonequilibrium dynamics of the Quantum Ising Model following an
abrupt quench of the transverse field. We focus on the on-site autocorrelation
function of the order parameter, and extract the phase coherence time
from its asymptotic behavior. We show that the initial state
determines only through an effective temperature set by its
energy and the final Hamiltonian. Moreover, we observe that the dependence of
on the effective temperature fairly agrees with that obtained
in thermal equilibrium as a function of the equilibrium temperature.Comment: 4 pages, 4 figures. Published versio
Matrix Product State representation for Slater Determinants and Configuration Interaction States
Slater determinants are product states of filled quantum fermionic orbitals.
When they are expressed in a configuration space basis chosen a priori, their
entanglement is bound and controlled. This suggests that an exact
representation of Slater determinants as finitely-correlated states is
possible. In this paper we analyze this issue and provide an exact Matrix
Product representation for Slater determinant states. We also argue possible
meaningful extensions that embed more complex configuration interaction states
into the description.Comment: 16 pages, 4 figures. Published in IJMPB, focus issue on "Classical
vs. Quantum Correlations in Composite Systems
Long time dynamics following a quench in an integrable quantum spin chain: local versus non-local operators and effective thermal behavior
We study the dynamics of the quantum Ising chain following a zero-temperature
quench of the transverse field strength. Focusing on the behavior of two-point
spin correlation functions, we show that the correlators of the order parameter
display an effective asymptotic thermal behavior, i.e., they decay
exponentially to zero, with a phase coherence rate and a correlation length
dictated by the equilibrium law with an effective temperature set by the energy
of the initial state. On the contrary, the two-point correlation functions of
the transverse magnetization or the density-of-kinks operator decay as a
power-law and do not exhibit thermal behavior. We argue that the different
behavior is linked to the locality of the corresponding operator with respect
to the quasi-particles of the model: non-local operators, such as the order
parameter, behave thermally, while local ones do not. We study which features
of the two-point correlators are a consequence of the integrability of the
model by analizing their robustness with respect to a sufficiently strong
integrability-breaking term.Comment: 18 pages, 11 figures, published version. Extensive changes, one
author adde
Adiabatic dynamics in a spin-1 chain with uniaxial single-spin anisotropy
We study the adiabatic quantum dynamics of an anisotropic spin-1 XY chain
across a second order quantum phase transition. The system is driven out of
equilibrium by performing a quench on the uniaxial single-spin anisotropy, that
is supposed to vary linearly in time. We show that, for sufficiently large
system sizes, the excess energy after the quench admits a non trivial scaling
behavior that is not predictable by standard Kibble-Zurek arguments for
isolated critical points or extended critical regions. This emerges from a
competing effect of many accessible low-lying excited states, inside the whole
continuous line of critical points.Comment: 17 pages, 8 figures, published versio
Many-body localization and thermalization in the full probability distribution function of observables
We investigate the relation between thermalization following a quantum quench
and many-body localization in quasiparticle space in terms of the long-time
full distribution function of physical observables. In particular, expanding on
our recent work [E. Canovi {\em et al.}, Phys. Rev. B {\bf 83}, 094431 (2011)],
we focus on the long-time behavior of an integrable XXZ chain subject to an
integrability-breaking perturbation. After a characterization of the breaking
of integrability and the associated localization/delocalization transition
using the level spacing statistics and the properties of the eigenstates, we
study the effect of integrability-breaking on the asymptotic state after a
quantum quench of the anisotropy parameter, looking at the behavior of the full
probability distribution of the transverse and longitudinal magnetization of a
subsystem. We compare the resulting distributions with those obtained in
equilibrium at an effective temperature set by the initial energy. We find
that, while the long time distribution functions appear to always agree {\it
qualitatively} with the equilibrium ones, {\it quantitative} agreement is
obtained only when integrability is fully broken and the relevant eigenstates
are diffusive in quasi-particle space.Comment: 18 pages, 11 figure
Produzione, qualità e analisi della filiera produttiva del lino da fibra in Italia
Fibre flax (Linum usitatissimum L.) is disappeared from the ltalian crop systems, while the textile industry has reached a leading position. The reintroduction of the crop is than potentially promising but the crop techniques and the production processes have to be set up.
In 12 environments: crop development and growth, cultivar response, straw, fibre and seed yields, and fibre quality were analysed in the 1992-98 period.
The data pointed out crop cycles of 176 and 110 d for the autumn and the spring sowing time respectively, corresponding to 1125 and 990°C d cumulated growing degree. Straw yield at pulling was on average of 6.3 t ha-1, with relevant differences among years and environrnents. Early maturity cultivar yielded more in the less favourable sites. N fertilization was occasionally relevant, and a generally distributions of 60 kg N ha-1 was the more effective. In the Mediterranean environments, with the autumn, sowing flax was more productive and the yield steady. The long fibre ratio was often low (10-13%) and the quality uneven because of the insufficient cleanliness due to retting difficulties. Occasionally, the value of the fibre was affected by the insufficient stem length. In the less dense crop, the seed yield was on average 0.9 t ha-1. Such productions were similar to those assessed for the more dense crop.
In conclusion: because of the complexity of the interactions among the crop growth, the yield, the retting process and the fibre quality flax reintroduction is doubtful. In the production processes retting seems to be the crucial phase.
Il lino da fibra (Linum usitatissimum L.) è da tempo assente negli ordinamenti colturali italiani, mentre è assai importante l'industria di filatura. La reintroduzione della coltura appare quindi potenzialmente promettente, ma richiede la messa a punto dell'agrotecnica e della filiera produttiva.
Nel periodo 1992-1998 in 12 ambienti sono stati esaminati: lo sviluppo e la crescita della coltura, l'adattamento di cultivar, la produzione di paglia, fibra e seme, la resa alla stigliatura, la qualità della fibra.
I dati raccolti evidenziano cicli colturali in media di 176 e 110 d rispettivamente per le semine autunnali (ambienti del centro-sud) e vemino-primaverili; corrispondenti a somme termiche di 1125 e 990°C d. La produzione di paglia alla estirpatura è stata in media di 6.3 t ha-1 con valori assai variabili tra annate e ambienti. Le varietà a ciclo corto sono apparse migliori nelle condizioni difficili. L'effetto della concimazione azotata è apparsa talvolta rilevante e comunque con dosi ottimali prossime a 60 kg ha-1 di N. Negli ambienti del centro-sud le semine autunnali si sono
dimostrate spesso le più interessanti e sicure. La resa in fibra lunga è stata bassa (10-13%) e la qualità variabile per la scarsa pulizia dovuta alle difficoltà di macerazione. La modesta lunghezza tecnica dello stelo sovente riduce il valore del prodotto. In coltura rada, la produzione di seme è variata da 0.5 a 1.5 t ha-1; tali valori non si sono discostati in modo apprezzabile da quelli ottenuti in coltura fitta.
In conclusione, la diffusione del lino appare problematica per le complesse interazioni tra la produzione, il processo di macerazione e la qualità della fibra. Soprattutto la macerazione appare il passaggio chiave
Defining brain–machine interface applications by matching interface performance with device requirements
Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications. © 2007 Elsevier B.V. All rights reserved
- …
