568 research outputs found
Vulnerability analysis of satellite-based synchronized smart grids monitoring systems
The large-scale deployment of wide-area monitoring systems could play a strategic role in supporting the evolution of traditional power systems toward smarter and self-healing grids. The correct operation of these synchronized monitoring systems requires a common and accurate timing reference usually provided by a satellite-based global positioning system. Although these satellites signals provide timing accuracy that easily exceeds the needs of the power industry, they are extremely vulnerable to radio frequency interference. Consequently, a comprehensive analysis aimed at identifying their potential vulnerabilities is of paramount importance for correct and safe wide-area monitoring system operation. Armed with such a vision, this article presents and discusses the results of an experimental analysis aimed at characterizing the vulnerability of global positioning system based wide-area monitoring systems to external interferences. The article outlines the potential strategies that could be adopted to protect global positioning system receivers from external cyber-attacks and proposes decentralized defense strategies based on self-organizing sensor networks aimed at assuring correct time synchronization in the presence of external attacks
On-sky single-mode fiber coupling measurements at the Large Binocular Telescope
The demonstration of efficient single-mode fiber (SMF) coupling is a key
requirement for the development of a compact, ultra-precise radial velocity
(RV) spectrograph. iLocater is a next generation instrument for the Large
Binocular Telescope (LBT) that uses adaptive optics (AO) to inject starlight
into a SMF. In preparation for commissioning iLocater, a prototype SMF
injection system was installed and tested at the LBT in the Y-band (0.970-1.065
m). This system was designed to verify the capability of the LBT AO system
as well as characterize on-sky SMF coupling efficiencies. SMF coupling was
measured on stars with variable airmasses, apparent magnitudes, and seeing
conditions for six half-nights using the Large Binocular Telescope
Interferometer. We present the overall optical and mechanical performance of
the SMF injection system, including details of the installation and alignment
procedure. A particular emphasis is placed on analyzing the instrument's
performance as a function of telescope elevation to inform the final design of
the fiber injection system for iLocater.Comment: 11 pages, 7 figure
Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis
Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species
China’s Dam Builders: their role in transboundary river management in Southeast Asia
This article investigates China’s role as the world’s largest builder of and investor in large dams, focussing on the Greater Mekong Sub-Region in South-East Asia. It addresses the role Chinese actors play in dam-building as well as the environmental, social, economic and political implications by drawing on case studies from Cambodia and Vietnam. The article finds that China’s dam-building is perceived very differently in different countries of South-East Asia. In Cambodia, the dams in the Greater Mekong Sub-Region are considered instruments of economic growth and development, whereas downstream in Vietnam the dams are seen as potentially undermining national growth, development and security
Anti-proliferative effect of Rosmarinus officinalis L. extract on human melanoma A375 cells
Rosemary (Rosmarinus officinalis L.) has been used since ancient times in traditional medicine, while nowadays various rosemary formulations are increasingly exploited by alternative medicine to cure or prevent a wide range of health disorders. Rosemary's bioproperties have prompted scientific investigation, which allowed us to ascertain antioxidant, anti-inflammatory, cytostatic, and cytotoxic activities of crude extracts or of pure components. Although there is a growing body of experimental work, information about rosemary's anticancer properties, such as chemoprotective or anti-proliferative effects on cancer cells, is very poor, especially concerning the mechanism of action. Melanoma is a skin tumor whose diffusion is rapidly increasing in the world and whose malignancy is reinforced by its high resistance to cytotoxic agents; hence the availability of new cytotoxic drugs would be very helpful to improve melanoma prognosis. Here we report on the effect of a rosemary hydroalcoholic extract on the viability of the human melanoma A375 cell line. Main components of rosemary extract were identified by liquid chromatography coupled to tandem mass spectrometry (LC/ESI-MS/MS) and the effect of the crude extract or of pure components on the proliferation of cancer cells was tested by MTT and Trypan blue assays. The effect on cell cycle was investigated by using flow cytometry, and the alteration of the cellular redox state was evaluated by intracellular ROS levels and protein carbonylation analysis. Furthermore, in order to get information about the molecular mechanisms of cytotoxicity, a comparative proteomic investigation was performed
Direct search for light gluinos
We present the results for a direct search for light gluinos through the appearance of with high transverse momentum in the vacuum tank of the NA48 experiment at CERN. We find one event within a lifetime range of s and another one between s. Both events are consistent with the expected background from neutrons in the beam, produced by 450 GeV protons impinging on the Be targets, which interact with the residual air in the tank. From these data we give limits on the production of the hypothetical bound state, the hadron, and its decay in the mass range between 1 and 5~GeV
Invasive fungal infections in Neonatal Intensive Care Units of Southern Italy: a multicentre regional active surveillance (AURORA Project)
Introduction. During the past years invasive fungal infections (IFIs) have become an increasingly important problem in infants hospitalized in the Neonatal Intensive Care Unit (NICU). Candida species is the third most-common agent of late-onset infections in critically ill neonates, with an estimated incidence of 2.6-10% in very low birth weight and 5.5-20% in extremely low birth weight infants.
The aim of this observational study is to evaluate the epidemiology of IFIs among infants admitted to NICUs of one Italian region by a multicenter surveillance (Aurora Project).
Methods. The IFIs surveillance was carried out prospectively in Apulia (Southern Italy) between February 2007 and August 2008. This report focuses on the results from 6 enrolled NICUs.
Results. Twenty-one neonates developed IFIs: the overall incidence was 1.3% and crude mortality was 23.8%. Infants weighing ? 1500g (4.3%) showed a significantly higher incidence
than those ? 2500g (0.2%). C.parapsilosis (61.9%) was the most frequent isolated species. The main potential risk factors were having a central venous catheter placed, length of stay in NICU > 7 days and total parenteral nutrition for > 5 days. The (1,3)-Ã-D glucan (BDG), mannan antigens and anti-Candida antibodies? evaluation was performed in 7 neonates. All neonates were positive to the BDG; the mannan antigen result was positive in 5 newborns, the anti-mannan antibodies were always negative. All isolates were amphotericin B and fluconazole-susceptible.
Discussion. This first prospective study on neonatal fungal infection in one Italian region gives evidence of a preponderance of non-albicans Candida spp and indicates potential utility of BDG
as an adjunct diagnostic test
A Virus-Like-Particle immunotherapy targeting Epitope-Specific anti-xCT expressed on cancer stem cell inhibits the progression of metastatic cancer in vivo
Wearable Sensor for Real-time Monitoring of Hydrogen Peroxide in Simulated Exhaled Air
In this work, an innovative and cheap electrochemical sensor for hydrogen peroxide quantification in exhaled breath was developed. H2O2 is the most used biomarker among the Reactive Oxygen Species (ROS) for monitoring the level of oxidative stress in the respiratory system. This is due to its stability and ability to cross biological membranes and also because it is detectable in extracellular space. The electrochemical sensor was obtained using the silver layer of wasted compact discs (CDs). All three electrodes, working (WE), counter (CE), and pseudo-reference electrode (RE), were fabricated using a laser cutter. The working electrode was used directly, while an Ag/AgCl paste and a graphite paste were applied respectively on the RE and the CE. In addition, a chitosan layer was deposited by Electro-Phoretic Deposition (EPD) on the surface of the sensor. This biopolymer improves the wettability of the sensor in presence of a humid atmosphere such as that given by exhaled air. The sensor was tested in both liquid and nebulized solutions containing different concentrations of hydrogen peroxide. The detection of H2O2 was evaluated using Linear Sweep Voltammetry (LSV) as electrochemical technique. The results show that the peak current increases linearly with hydrogen peroxide concentration from 100 to 500 μM with a sensitivity of 0.068 µA µM−1 cm−2 and 0.108 µA µM−1 cm−2, a Limit Of Detection (LOD) of 60 μM and 30 μM respectively for liquid and nebulized solutions. Therefore, the use of the electrochemical sensor can allow the monitoring of hydrogen peroxide in real time with good results
High Density Lipoproteinspotentiate α-1 antitrypsin therapy in elastase-induced pulmonary emphysema
Several studies report that high-density lipoproteins (HDLs) can carry α1-antitrypsin (AAT; an elastase inhibitor). We aimed to determine whether injection of exogenous HDL, enriched or not in AAT, may have protective effects against pulmonary emphysema. After tracheal instillation of saline or elastase, mice were randomly treated intravenously with saline, human plasma HDL (75 mg apolipoprotein A1/kg), HDL-AAT (75 mg apolipoprotein A1–3.75 mg AAT/kg), or AAT alone (3.75 mg/kg) at 2, 24, 48, and 72 hours. We have shown that HDL-AAT reached the lung and prevented the development of pulmonary emphysema by 59.3% at 3 weeks (alveoli mean chord length, 22.9 ± 2.8 μm versus 30.7 ± 4.5 μm; P < 0.001), whereas injection of HDL or AAT alone only showed a moderate, nonsignificant protective effect (28.2 ± 4.2 μm versus 30.7 ± 5 μm [P = 0.23] and 27.3 ± 5.66 μm versus 30.71 ± 4.96 μm [P = 0.18], respectively). Indeed, protection by HDL-AAT was significantly higher than that observed with HDL or AAT (P = 0.006 and P = 0.048, respectively). This protective effect was associated (at 6, 24, and 72 h) with: (1) a reduction in neutrophil and macrophage number in the bronchoalveolar lavage fluid; (2) decreased concentrations of IL-6, monocyte chemoattractant protein-1, and TNF-α in both bronchoalveolar lavage fluid and plasma; (3) a reduction in matrix metalloproteinase-2 and matrix metalloproteinase-9 activities; and (4) a reduction in the degradation of fibronectin, a marker of tissue damage. In addition, HDL-AAT reduced acute cigarette smoke–induced inflammatory response. Intravenous HDL-AAT treatment afforded a better protection against elastase-induced pulmonary emphysema than AAT alone, and may represent a significant development for the management of emphysema associated with AAT deficiency
- …
