647 research outputs found

    Establishing microbial baselines to identify indicators of coral reef health

    Get PDF
    Microorganisms make a significant contribution to reef ecosystem health and resilience via their critical role in mediating nutrient transformations, their interactions with macro-organisms and their provision of chemical cues that underpin the recruitment of diverse reef taxa. However, environmental changes often cause compositional and functional shifts in microbial communities that can have flow-on consequences for microbial-mediated processes. These microbial alterations may impact the health of specific host organisms and can have repercussions for the functioning of entire coral ecosystems. Assessing changes in reef microbial communities should therefore provide an early indicator of ecosystem impacts and would underpin the development of diagnostic tools that could help forecast shifts in coral reef health under different environmental states. Monitoring, management and active restoration efforts have recently intensified and diversified in response to global declines in coral reef health. Here we propose that regular monitoring of coral reef microorganisms could provide a rapid and sensitive platform for identifying declining ecosystem health that can complement existing management frameworks. By summarising the most common threats to coral reefs, with a particular focus on the Great Barrier Reef, and elaborating on the role of microbes in coral reef health and ecosystem stability, we highlight the diagnostic applicability of microbes in reef management programs. Fundamental to this objective is the establishment of microbial baselines for Australia's coral reefs.AIMS@JCU PhD Scholarship; GBRMPA Science Management Research Award; Advance Queensland PhD Scholarship; Portuguese Science and Technology Foundation (FCT) [SFRH/BPD/110285/2015

    How water and its use shaped the spatial development of Vienna

    Get PDF
    Telling an environmental history of Vienna’s urban waters, this paper advocates the compound study of the evolution of fluvial and urban form. It traces the structural permanence of diverse types of running waters in a period of massive urban transformation from early modern times to present. The focus on the material effects, side-effects and afterlives of socio-natural processes offers novel perspectives to the reconstruction of city development. The featured cases show that long-term studies are vital in understanding the genesis of urban water bodies and urban form as a product of socio-natural processes. They inform us about the inertia of arrangements and the unforeseen perpetuation of site-specific effects of interventions. Societal interaction with natural elements such as Vienna’s waters, we conclude, reverberates in the material and immaterial realm alike

    Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Full text link
    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation by tissue optical properties, an effect that causes spectral corruption. Predictions of the spectral variations of light fluence in tissue are challenging since the spatial distribution of optical properties in tissue cannot be resolved in high resolution or with high accuracy by current methods. Spectral corruption has fundamentally limited the quantification accuracy of optical and optoacoustic methods and impeded the long sought-after goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical but still unattainable target for the assessment of oxygenation in physiological processes and disease. We discover a new principle underlying light fluence in tissues, which describes the wavelength dependence of light fluence as an affine function of a few reference base spectra, independently of the specific distribution of tissue optical properties. This finding enables the introduction of a previously undocumented concept termed eigenspectra Multispectral Optoacoustic Tomography (eMSOT) that can effectively account for wavelength dependent light attenuation without explicit knowledge of the tissue optical properties. We validate eMSOT in more than 2000 simulations and with phantom and animal measurements. We find that eMSOT can quantitatively image tissue sO2 reaching in many occasions a better than 10-fold improved accuracy over conventional spectral optoacoustic methods. Then, we show that eMSOT can spatially resolve sO2 in muscle and tumor; revealing so far unattainable tissue physiology patterns. Last, we related eMSOT readings to cancer hypoxia and found congruence between eMSOT tumor sO2 images and tissue perfusion and hypoxia maps obtained by correlative histological analysis

    Comparative genome-centric analysis reveals seasonal variation in the function of coral reef microbiomes

    Get PDF
    Microbially mediated processes contribute to coral reef resilience yet, despite extensive characterisation of microbial community variation following environmental perturbation, the effect on microbiome function is poorly understood. We undertook metagenomic sequencing of sponge, macroalgae and seawater microbiomes from a macroalgae-dominated inshore coral reef to define their functional potential and evaluate seasonal shifts in microbially mediated processes. In total, 125 high-quality metagenome-assembled genomes were reconstructed, spanning 15 bacterial and 3 archaeal phyla. Multivariate analysis of the genomes relative abundance revealed changes in the functional potential of reef microbiomes in relation to seasonal environmental fluctuations (e.g. macroalgae biomass, temperature). For example, a shift from Alphaproteobacteria to Bacteroidota-dominated seawater microbiomes occurred during summer, resulting in an increased genomic potential to degrade macroalgal-derived polysaccharides. An 85% reduction of Chloroflexota was observed in the sponge microbiome during summer, with potential consequences for nutrition, waste product removal, and detoxification in the sponge holobiont. A shift in the Firmicutes:Bacteroidota ratio was detected on macroalgae over summer with potential implications for polysaccharide degradation in macroalgal microbiomes. These results highlight that seasonal shifts in the dominant microbial taxa alter the functional repertoire of host-associated and seawater microbiomes, and highlight how environmental perturbation can affect microbially mediated processes in coral reef ecosystems.Australian Government Department of Industry, Innovation and Science; Advance Queensland PhD Scholarship Great Barrier Reef Marine Park Authority Management Award National Environmental Science Program (NESP)info:eu-repo/semantics/publishedVersio

    Dimethylsulfoniopropionate in corals and its interrelations with bacterial assemblages in coral surface mucus

    Get PDF
    Corals produce copious amounts of dimethylsulfoniopropionate (DMSP), a sulfur compound thought toplay a role in structuring coral-associated bacterial communities. We tested the hypothesis that a linkage exists betweenDMSP availability in coral tissues and the community dynamics of bacteria in coral surface mucus. We determinedDMSP concentrations in three coral species (Meandrina meandrites, Porites astreoides and Siderastrea siderea) at twosampling depths (5 and 25 m) and times of day (dawn and noon) at Curac¸ao, Southern Caribbean. DMSP concentration(4–409 nmol cm?2 coral surface) varied with host species-specific traits such as Symbiodinium cell abundance, but notwith depth or time of sampling. Exposure of corals to air caused a doubling of their DMSPconcentration. The phylogeneticaffiliation of mucus-associated bacteria was examined by clone libraries targeting three main subclades of the bacterialDMSP demethylase gene (dmdA). dmdA gene abundance was determined by quantitative Polymerase Chain Reaction(qPCR) against a reference housekeeping gene (recA). Overall, a higher availability of DMSP corresponded to a lowerrelative abundance of the dmdA gene, but this pattern was not uniform across all host species or bacterial dmdA subclades,suggesting the existence of distinct DMSP microbial niches or varying dmdA DMSP affinities. This is the first studyquantifying dmdA gene abundance in corals and linking related changes in the community dynamics of DMSP-degradingbacteria to DMSP availability. Our study suggests that DMSP mediates the regulation of microbe

    Microbial indicators for environmental stress and ecosystem health assessments

    Get PDF
    Bettina Glasl established the first microbial baseline for the Great Barrier Reef (GBR) and quantified the diagnostic potential of multiple reef microbiomes. She found that the seawater microbiome was the most suitable microbiome for a microbial indicator program. Her research provides a framework for the integration of microbial observatories in reef monitoring programs

    On the importance of the microbiome and pathobiome in coral health and disease

    Get PDF
    The term “microbiome” was first coined in 1988 and given the definition of a characteristic microbial community occupying a reasonably well defined habitat which has distinct physio-chemical properties. A more recent term has also emerged, taking this one step further and focusing on diseases in host organisms. The “pathobiome” breaks down the concept of “one pathogen = one disease” and highlights the role of the microbiome, more specifically certain members within the microbiome, in causing pathogenesis. The development of next generation sequencing has allowed large data sets to be amassed describing the microbial communities of many organisms and the field of coral biology is no exception. However, the choices made in the analytical process and the interpretation of these data can significantly affect the outcome and the overall conclusions drawn. In this review we explore the implications of these difficulties, as well as highlighting analytical tools developed in other research fields (such as network analysis) which hold substantial potential in helping to develop a deeper understanding of the role of the microbiome in disease in corals. We also make the case that standardization of methods will substantially improve the collective gain in knowledge across research groups.N/

    Distinct bacterial communities associated with the coral model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium.

    Get PDF
    Coral reefs are in decline. The basic functional unit of coral reefs is the coral metaorganism or holobiont consisting of the cnidarian host animal, symbiotic algae of the genus Symbiodinium, and a specific consortium of bacteria (among others), but research is slow due to the difficulty of working with corals. Aiptasia has proven to be a tractable model system to elucidate the intricacies of cnidarian-dinoflagellate symbioses, but characterization of the associated bacterial microbiome is required to provide a complete and integrated understanding of holobiont function. In this work, we characterize and analyze the microbiome of aposymbiotic and symbiotic Aiptasia and show that bacterial associates are distinct in both conditions. We further show that key microbial associates can be cultured without their cnidarian host. Our results suggest that bacteria play an important role in the symbiosis of Aiptasia with Symbiodinium, a finding that underlines the power of the Aiptasia model system where cnidarian hosts can be analyzed in aposymbiotic and symbiotic states. The characterization of the native microbiome and the ability to retrieve culturable isolates contributes to the resources available for the Aiptasia model system. This provides an opportunity to comparatively analyze cnidarian metaorganisms as collective functional holobionts and as separated member species. We hope that this will accelerate research into understanding the intricacies of coral biology, which is urgently needed to develop strategies to mitigate the effects of environmental change.This work was supported by baseline funds to CRV by King Abdullah University of Science and Technology (KAUST) and by the Center Competitive Funding (CCF) Program FCC/1/1973- 18-01
    corecore