197 research outputs found
An Integrated System at the Bleien Observatory for Mapping the Galaxy
We describe the design and performance of the hardware system at the Bleien
Observatory. The system is designed to deliver a map of the Galaxy for studying
the foreground contamination of low-redshift (z=0.13--0.43) H
intensity mapping experiments as well as other astronomical Galactic studies.
This hardware system is composed of a 7m parabolic dish, a dual-polarization
corrugated horn feed, a pseudo correlation receiver, a Fast Fourier Transform
spectrometer, and an integrated control system that controls and monitors the
progress of the data collection. The main innovative designs in the hardware
are (1) the pseudo correlation receiver and the cold reference source within
(2) the high dynamic range, high frequency resolution spectrometer and (3) the
phase-switch implementation of the system. This is the first time these
technologies are used together for a L-band radio telescope to achieve an
electronically stable system, which is an essential first step for wide-field
cosmological measurements. This work demonstrates the prospects and challenges
for future H intensity mapping experiments.Comment: 11 pages, 12 figures, 1 table, Submitted to MNRA
ERIS: revitalising an adaptive optics instrument for the VLT
ERIS is an instrument that will both extend and enhance the fundamental
diffraction limited imaging and spectroscopy capability for the VLT. It will
replace two instruments that are now being maintained beyond their operational
lifetimes, combine their functionality on a single focus, provide a new
wavefront sensing module that makes use of the facility Adaptive Optics System,
and considerably improve their performance. The instrument will be competitive
with respect to JWST in several regimes, and has outstanding potential for
studies of the Galactic Center, exoplanets, and high redshift galaxies. ERIS
had its final design review in 2017, and is expected to be on sky in 2020. This
contribution describes the instrument concept, outlines its expected
performance, and highlights where it will most excel.Comment: 12 pages, Proc SPIE 10702 "Ground-Based and Airborne Instrumentation
for Astronomy VII
Accretion and outflow-related X-rays in T Tauri stars
We report on accretion- and outflow-related X-rays from T Tauri stars, based on results from the "XMM-Newton Extended Survey of the Taurus Molecular Cloud.” X-rays potentially form in shocks of accretion streams near the stellar surface, although we hypothesize that direct interactions between the streams and magnetic coronae may occur as well. We report on the discovery of a "soft excess” in accreting T Tauri stars supporting these scenarios. We further discuss a new type of X-ray source in jet-driving T Tauri stars. It shows a strongly absorbed coronal component and a very soft, weakly absorbed component probably related to shocks in microjets. The excessive coronal absorption points to dust-depletion in the accretion stream
Laboratory Experiments of Model-based Reinforcement Learning for Adaptive Optics Control
Direct imaging of Earth-like exoplanets is one of the most prominent
scientific drivers of the next generation of ground-based telescopes.
Typically, Earth-like exoplanets are located at small angular separations from
their host stars, making their detection difficult. Consequently, the adaptive
optics (AO) system's control algorithm must be carefully designed to
distinguish the exoplanet from the residual light produced by the host star.
A new promising avenue of research to improve AO control builds on
data-driven control methods such as Reinforcement Learning (RL). RL is an
active branch of the machine learning research field, where control of a system
is learned through interaction with the environment. Thus, RL can be seen as an
automated approach to AO control, where its usage is entirely a turnkey
operation. In particular, model-based reinforcement learning (MBRL) has been
shown to cope with both temporal and misregistration errors. Similarly, it has
been demonstrated to adapt to non-linear wavefront sensing while being
efficient in training and execution.
In this work, we implement and adapt an RL method called Policy Optimization
for AO (PO4AO) to the GHOST test bench at ESO headquarters, where we
demonstrate a strong performance of the method in a laboratory environment. Our
implementation allows the training to be performed parallel to inference, which
is crucial for on-sky operation. In particular, we study the predictive and
self-calibrating aspects of the method. The new implementation on GHOST running
PyTorch introduces only around 700 microseconds in addition to hardware,
pipeline, and Python interface latency. We open-source well-documented code for
the implementation and specify the requirements for the RTC pipeline. We also
discuss the important hyperparameters of the method, the source of the latency,
and the possible paths for a lower latency implementation.Comment: Accepted for publication in JATI
The nature of point source fringes in mid-infrared spectra acquired with the James Webb Space Telescope
The constructive and destructive interference in different layers of the
James Webb Space Telescope (JWST) Mid-Infrared Instrument (MIRI) detector
arrays modulate the detected signal as a function of wavelength. Additionally,
sources of different spatial profiles show different fringe patterns. Dividing
by a static fringe flat could hamper the scientific interpretation of sources
whose fringes do not match that of the fringe flat. We find point source
fringes measured by the MIRI Medium-Resolution Spectrometer (MRS) to be
reproducible under similar observing conditions. We want, thus, to identify the
variables, if they exist, that would allow for a parametrization of the signal
variations induced by point source fringe modulations. We do this by analyzing
MRS detector plane images acquired on the ground. We extracted the fringe
profile of multiple point source observations and studied the amplitude and
phase of the fringes as a function of field position and pixel sampling of the
point spread function of the optical chain. A systematic variation in the
amplitude and phase of the point source fringes is found over the wavelength
range covered by the test sources (4.9-5.8 m). The variation depends on
the fraction of the point spread function seen by the detector pixel. We
identify the non-uniform pixel illumination as the root cause of the reported
systematic variation. We report an improvement after correction of 50% on the
1 standard deviation of the spectral continuum. A 50% improvement is
also reported in line sensitivity for a benchmark test with a spectral
continuum of 100 mJy. The improvement in the shape of weak lines is illustrated
using a T Tauri model spectrum. Consequently, we verify that fringes of
extended sources and potentially semi-extended sources and crowded fields can
be simulated by combining multiple point source fringe transmissions.Comment: 17 pages, 31 figure
Large Interferometer For Exoplanets (LIFE): II. Signal simulation, signal extraction, and fundamental exoplanet parameters from single-epoch observations
peer reviewedContext. The Large Interferometer For Exoplanets (LIFE) initiative is developing the science and a technology road map for an ambitious space mission featuring a space-based mid-infrared (MIR) nulling interferometer in order to detect the thermal emission of hundreds of exoplanets and characterize their atmospheres.
Aims. In order to quantify the science potential of such a mission, in particular in the context of technical trade-offs, an instrument simulator is required. In addition, signal extraction algorithms are needed to verify that exoplanet properties (e.g., angular separation and spectral flux) contained in simulated exoplanet data sets can be accurately retrieved.
Methods. We present LIFEsim, a software tool developed for simulating observations of exoplanetary systems with an MIR space-based nulling interferometer. It includes astrophysical noise sources (i.e., stellar leakage and thermal emission from local zodiacal and exozodiacal dust) and offers the flexibility to include instrumental noise terms in the future. Here, we provide some first quantitative limits on instrumental effects that would allow the measurements to remain in the fundamental noise limited regime. We demonstrate updated signal extraction approaches to validating signal-to-noise ratio (S/N) estimates from the simulator. Monte Carlo simulations are used to generate a mock survey of nearby terrestrial exoplanets and determine to which accuracy fundamental planet properties can be retrieved.
Results. LIFEsim provides an accessible way to predict the expected S/N of future observations as a function of various key instrument and target parameters. The S/Ns of the extracted spectra are photon noise dominated, as expected from our current simulations. Signals from multi-planet systems can be reliably extracted. From single-epoch observations in our mock survey of small (R < 1.5 REarth) planets orbiting within the habitable zones of their stars, we find that typical uncertainties in the estimated effective temperature of the exoplanets are ≲10%, for the exoplanet radius ≲20%, and for the separation from the host star ≲2%. Signal-to-noise-ratio values obtained in the signal extraction process deviate by less than 10% from purely photon-counting statistics-based S/Ns.
Conclusions. LIFEsim has been sufficiently well validated so that it can be shared with a broader community interested in quantifying various exoplanet science cases that a future space-based MIR nulling interferometer could address. Reliable signal extraction algorithms exist, and our results underline the power of the MIR wavelength range for deriving fundamental exoplanet properties from single-epoch observations.Large Interferometer For Exoplanets (LIFE
MINDS. Hydrocarbons detected by JWST/MIRI in the inner disk of Sz28 consistent with a high C/O gas-phase chemistry
Context. With the advent of JWST, we are acquiring unprecedented insights into the physical and chemical structure of the inner regions of planet-forming disks where terrestrial planet formation occurs. Very low-mass stars (VLMSs) are known to have a high occurrence of the terrestrial planets orbiting them. Exploring the chemical composition of the gas in these inner disk regions can help us better understand the connection between planet-forming disks and planets. Aims. The MIRI mid-Infrared Disk Survey (MINDS) project is a large JWST guaranteed time program whose aim is to characterise the chemistry and physical state of planet-forming and debris disks. We used the JWST-MIRI/MRS spectrum to investigate the gas and dust composition of the planet-forming disk around the VLMS Sz28 (M5.5, 0.12 M⊙). Methods. We used the dust-fitting tool DuCK to determine the dust continuum and to place constraints on the dust composition and grain sizes. We used 0D slab models to identify and fit the molecular spectral features, which yielded estimates on the temperature, column density, and emitting area. To test our understanding of the chemistry in the disks around VLMSs, we employed the thermochemical disk model PRODIMO and investigated the reservoirs of the detected hydrocarbons. We explored how the C/O ratio affects the inner disk chemistry. Results. JWST reveals a plethora of hydrocarbons, including CH3, CH4, C2H2 13CCH2, C2H6, C3H4, C4H2 and C6H6 which suggests a disk with a gaseous C/O > 1. Additionally, we detect CO2 13CO2, HCN, and HC3N. H2O and OH are absent from the spectrum. We do not detect polycyclic aromatic hydrocarbons. Photospheric stellar absorption lines of H2O and CO are identified. Notably, our radiation thermo-chemical disk models are able to produce these detected hydrocarbons in the surface layers of the disk when C/O > 1. The presence of C, C+, H, and H2 is crucial for the formation of hydrocarbons in the surface layers, and a C/O ratio larger than 1 ensures the surplus of C needed to drive this chemistry. Based on this, we predict a list of additional hydrocarbons that should also be detectable. Both amorphous and crystalline silicates (enstatite and forsterite) are present in the disk and we find grain sizes of 2 and 5 μm. Conclusions. The disk around Sz28 is rich in hydrocarbons, and its inner regions have a high gaseous C/O ratio. In contrast, it is the first VLMS disk in the MINDS sample to show both distinctive dust features and a rich hydrocarbon chemistry. The presence of large grains indicates dust growth and evolution. Thermo-chemical disk models that employ an extended hydrocarbon chemical network together with C/O >1 are able to explain the hydrocarbon species detected in the spectrum.</p
- …
