504 research outputs found
De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome
Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3β (GSK-3β). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3β activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT–related megalencephaly syndromes
Analysis of Synaptic Proteins in the Cerebrospinal Fluid as a New Tool in the Study of Inborn Errors of Neurotransmission
Abstract In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the
possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures
that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders
of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samplesfrom 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and
Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the
CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found
between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable
analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic
transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism.
Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases
Anatomical connectivity patterns predict face selectivity in the fusiform gyrus
A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus. By using only structural connectivity, as measured through diffusion-weighted imaging, we were able to predict functional activation to faces in the fusiform gyrus. These predictions outperformed two control models and a standard group-average benchmark. The structure–function relationship discovered from the initial participants was highly robust in predicting activation in a second group of participants, despite differences in acquisition parameters and stimuli. This approach can thus reliably estimate activation in participants who cannot perform functional imaging tasks and is an alternative to group-activation maps. Additionally, we identified cortical regions whose connectivity was highly influential in predicting face selectivity within the fusiform, suggesting a possible mechanistic architecture underlying face processing in humans.United States. Public Health Service (DA023427)National Institute of Mental Health (U.S.) (F32 MH084488)National Eye Institute (T32 EY013935)Poitras FoundationSimons FoundationEllison Medical Foundatio
Re-cycling paradigms: cell cycle regulation in adult hippocampal neurogenesis and implications for depression
Since adult neurogenesis became a widely accepted phenomenon, much effort has been put in trying to understand the mechanisms involved in its regulation. In addition, the pathophysiology of several neuropsychiatric disorders, such as depression, has been associated with imbalances in adult hippocampal neurogenesis. These imbalances may ultimately reflect alterations at the cell cycle level, as a common mechanism through which intrinsic and extrinsic stimuli interact with the neurogenic niche properties. Thus, the comprehension of these regulatory mechanisms has become of major importance to disclose novel therapeutic targets. In this review, we first present a comprehensive view on the cell cycle components and mechanisms that were identified in the context of the homeostatic adult hippocampal neurogenic niche. Then, we focus on recent work regarding the cell cycle changes and signaling pathways that are responsible for the neurogenesis imbalances observed in neuropathological conditions, with a particular emphasis on depression
Motivational modulation of bradykinesia in Parkinson's disease off and on dopaminergic medication.
Motivational influence on bradykinesia in Parkinson's disease may be observed in situations of emotional and physical stress, a phenomenon known as paradoxical kinesis. However, little is known about motivational modulation of movement speed beyond these extreme circumstances. In particular, it is not known if motivational factors affect movement speed by improving movement preparation/initiation or execution (or both) and how this effect relates to the patients' medication state. In the present study, we tested if provision of motivational incentive through monetary reward would speed-up movement initiation and/or execution in Parkinson's disease patients and if this effect depended on dopaminergic medication. We studied the effect of monetary incentive on simple reaction time in 11 Parkinson's disease patients both "off" and "on" dopaminergic medication and in 11 healthy participants. The simple reaction time task was performed across unrewarded and rewarded blocks. The initiation time and movement time were quantified separately. Anticipation errors and long responses were also recorded. The prospect of reward improved initiation times in Parkinson's disease patients both "off" and "on" dopaminergic medication, to a similar extent as in healthy participants. However, for "off" medication, this improvement was associated with increased frequency of anticipation errors, which were eliminated by dopamine replacement. Dopamine replacement had an additional, albeit small effect, on reward-related improvement of movement execution. Motivational strategies are helpful in overcoming bradykinesia in Parkinson's disease. Motivational factors may have a greater effect on bradykinesia when patients are "on" medication, as dopamine appears to be required for overcoming speed-accuracy trade-off and for improvement of movement execution. Thus, medication status should be an important consideration in movement rehabilitation programmes for patients with Parkinson's disease
Recommended from our members
Randomized controlled trial of Family Nurture Intervention in the NICU: assessments of length of stay, feasibility and safety
Background: While survival rates for preterm infants have increased, the risk for adverse long-term neurodevelopmental and behavioral outcomes remains very high. In response to the need for novel, evidence-based interventions that prevent such outcomes, we have assessed Family Nurture Intervention (FNI), a novel dual mother-infant intervention implemented while the infant is in the Neonatal Intensive Care Unit (NICU). Here, we report the first trial results, including the primary outcome measure, length of stay in the NICU and, the feasibility and safety of its implementation in a high acuity level IV NICU.
Methods: The FNI trial is a single center, parallel-group, randomized controlled trial at Morgan Stanley Children’s Hospital for mothers and their singleton or twin infants of 26–34 weeks gestation. Families were randomized to standard care (SC) or (FNI). FNI was implemented by nurture specialists trained to facilitate affective communication between mother and infant during specified calming interactions. These interactions included scent cloth exchange, sustained touch, vocal soothing and eye contact, wrapped or skin-to-skin holding, plus family-based support interactions.
Results: A total of 826 infants born between 26 and 34 weeks during the 3.5 year study period were admitted to the NICU. After infant and mother screening plus exclusion due to circumstances that prevented the family from participating, 373 infants were eligible for the study. Of these, we were unable to schedule a consent meeting with 56, and consent was withheld by 165. Consent was obtained for 150 infants from 115 families. The infants were block randomized to groups of N = 78, FNI and N = 72, SC. Sixteen (9.6%) of the randomized infants did not complete the study to home discharge, 7% of those randomized to SC and 12% of FNI infants. Mothers in the intervention group engaged in 3 to 4 facilitated one- to two-hour sessions/week. Intent to treat analyses revealed no significant difference between groups in medical complications. The mean length of stay was not significantly affected by the intervention.
Conclusion: There was no significant effect demonstrated with this intervention amount on the primary short-term outcome, length of stay. FNI can be safely and feasibly implemented within a level IV NICU
Recommended from our members
Randomized controlled trial of Family Nurture Intervention in the NICU: assessments of length of stay, feasibility and safety
Background: While survival rates for preterm infants have increased, the risk for adverse long-term neurodevelopmental and behavioral outcomes remains very high. In response to the need for novel, evidence-based interventions that prevent such outcomes, we have assessed Family Nurture Intervention (FNI), a novel dual mother-infant intervention implemented while the infant is in the Neonatal Intensive Care Unit (NICU). Here, we report the first trial results, including the primary outcome measure, length of stay in the NICU and, the feasibility and safety of its implementation in a high acuity level IV NICU.
Methods: The FNI trial is a single center, parallel-group, randomized controlled trial at Morgan Stanley Children’s Hospital for mothers and their singleton or twin infants of 26–34 weeks gestation. Families were randomized to standard care (SC) or (FNI). FNI was implemented by nurture specialists trained to facilitate affective communication between mother and infant during specified calming interactions. These interactions included scent cloth exchange, sustained touch, vocal soothing and eye contact, wrapped or skin-to-skin holding, plus family-based support interactions.
Results: A total of 826 infants born between 26 and 34 weeks during the 3.5 year study period were admitted to the NICU. After infant and mother screening plus exclusion due to circumstances that prevented the family from participating, 373 infants were eligible for the study. Of these, we were unable to schedule a consent meeting with 56, and consent was withheld by 165. Consent was obtained for 150 infants from 115 families. The infants were block randomized to groups of N = 78, FNI and N = 72, SC. Sixteen (9.6%) of the randomized infants did not complete the study to home discharge, 7% of those randomized to SC and 12% of FNI infants. Mothers in the intervention group engaged in 3 to 4 facilitated one- to two-hour sessions/week. Intent to treat analyses revealed no significant difference between groups in medical complications. The mean length of stay was not significantly affected by the intervention.
Conclusion: There was no significant effect demonstrated with this intervention amount on the primary short-term outcome, length of stay. FNI can be safely and feasibly implemented within a level IV NICU
Role of a Pediatric Cardiologist in the COVID-19 Pandemic
© 2020, Springer Science+Business Media, LLC, part of Springer Nature. Coronavirus disease 2019 (COVID-19) has affected patients across all age groups, with a wide range of illness severity from asymptomatic carriers to severe multi-organ dysfunction and death. Although early reports have shown that younger age groups experience less severe disease than older adults, our understanding of this phenomenon is in continuous evolution. Recently, a severe multisystem inflammatory syndrome in children (MIS-C), with active or recent COVID-19 infection, has been increasingly reported. Children with MIS-C may demonstrate signs and symptoms of Kawasaki disease, but also have some distinct differences. These children have more frequent and severe gastrointestinal symptoms and are more likely to present with a shock-like presentation. Moreover, they often present with cardiovascular involvement including myocardial dysfunction, valvulitis, and coronary artery dilation or aneurysms. Here, we present a review of the literature and summary of our current understanding of cardiovascular involvement in children with COVID-19 or MIS-C and identifying the role of a pediatric cardiologist in caring for these patients
- …
