1,949 research outputs found

    Single vortices observed as they enter NbSe2_2

    Full text link
    We observe single vortices as they penetrate the edge of a superconductor using a high-sensitivity magneto-optical microscope. The vortices leap across a gap near the edge, a distance that decreases with increasing applied field and sample thickness. This behaviour can be explained by the combined effect of the geometrical barrier and bulk pinning.Comment: 2 pages, 1 figure, M2S-Rio proceeding

    Interaction between a magnetic domain wall and a superconductor

    Full text link
    The interaction between a magnetic thin film and a superconductor is studied. In particular, the equilibrium width of a Bloch wall is estimated with and without the superconductor. It is shown that the Bloch wall experiences a small shrinkage on cooling through the critical temperature of the superconductor. Furthermore, the interaction between the Bloch wall and a single vortex is estimated, and a simple expression for the force is found.Comment: 12 pages, 4 figures Corrected the units. Published in PR

    Real time magneto-optical imaging of vortices in superconductors

    Full text link
    We demonstrate here real-time imaging of individual vortices in a NbSe2 single crystal using polarized light microscopy. A new high-sensitivity magneto-optical (MO) imaging system enables observation of the static vortex lattice as well as single vortex motion at low flux densities.Comment: 3 pages, 1 figur

    Anomalous interaction between vortices and nanomagnets

    Full text link
    We study a thin film system consisting of a superconducting and a magnetic film, where the superconductor contains a vortex and the magnetic film a nanomagnet. We find that if the magnetic film has planar anisotropy, the vortex induces a magnetization distribution, and its interaction with the nanomagnet crosses over from attractive to repulsive at short distances.Comment: 5 page

    Static and Dynamic Phases for Vortex Matter with Attractive Interactions

    Full text link
    Exotic vortex states with long range attraction and short range repulsion have recently been proposed to arise in superconducting hybrid structures and multi-band superconductors. Using large scale simulations we examine the static and dynamic properties of such vortex states interacting with random and periodic pinning. In the absence of pinning this system does not form patterns but instead completely phase separates. When pinning is present there is a transition from inhomogeneous to homogeneous vortex configurations similar to a wetting phenomenon. Under an applied drive, a dynamical dewetting process can occur from a strongly pinned homogeneous state into pattern forming states. We show that a signature of the exotic vortex interactions under transport measurements is a robust double peak feature in the differential conductivity curves.Comment: 5 pages, 4 postscript figure

    Onset of dendritic flux avalanches in superconducting films

    Full text link
    We report a detailed comparison of experimental data and theoretical predictions for the dendritic flux instability, believed to be a generic behavior of type-II superconducting films. It is shown that a thermo-magnetic model published very recently [Phys. Rev. B 73, 014512 (2006)] gives an excellent quantitative description of key features like the instability onset (first dendrite appearance) magnetic field, and how the onset field depends on both temperature and sample size. The measurements were made using magneto-optical imaging on a series of different strip-shaped samples of MgB2. Excellent agreement is also obtained by reanalyzing data previously published for Nb.Comment: 4 pages, 5 figure

    A fuzzy DEMATEL approach based on intuitionistic fuzzy information for evaluating knowledge transfer effectiveness in GSD projects

    Get PDF
    The offshore/onsite teams' effectiveness of knowledge transfer is significantly measured by various kinds of factors. In this paper, we propose a knowledge transfer (KT) assessment framework which integrates four criteria for evaluating the KT effectiveness of GSD teams. These are: knowledge, team, technology, and organisation factors. In this context, we present a fuzzy DEMATEL approach for assessing GSD teams KT effectiveness based on intuitionistic fuzzy numbers (IFNs). In this approach, decision makers provide their subjective judgments on the criteria, characterised on the basis of intuitionistic fuzzy sets. Moreover, intuitionistic fuzzy sets used in the fuzzy DEMATEL approach can effectively assess the KT effectiveness criteria and rank the alternatives. Subsequently, the entire process is illustrated with GSD teams' KT evaluation criteria samples, and the factors are ranked using fuzzy linguistic variables which are mapped to IFNs. Afterwards, the IFNs are converted into their corresponding basic probability assignments (BPAs) and then the Dempster-Shafer theory is used to combine the group decision making process. Besides, illustrative applicability and usefulness of the proposed approach in group decision making process for the evaluation of multiple criteria under fuzzy environment has been tested by software professionals at Inowits Software Organisation in India

    Interaction between superconducting vortices and Bloch wall in ferrite garnet film

    Full text link
    Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a superconductor is analyzed in the London approximation. Equilibrium distribution of vortices formed around the Bloch wall is calculated. The results agree quantitatively with magneto-optical experiment where an in-plane magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows observation of individual vortices. In particular, our model can reproduce a counter-intuitive attraction observed between vortices and a Bloch wall having the opposite polarity. It is explained by magnetic charges appearing due to discontinuity of the in-plane magnetization across the wall.Comment: 4 pages, 5 figure

    Probing Disordered Substrates by Imaging the Adsorbate in its Fluid Phase

    Get PDF
    Several recent imaging experiments access the equilibrium density profiles of interacting particles confined to a two-dimensional substrate. When these particles are in a fluid phase, we show that such data yields precise information regarding substrate disorder as reflected in one-point functions and two-point correlations of the fluid. Using Monte Carlo simulations and replica generalizations of liquid state theories, we extract unusual two-point correlations of time-averaged density inhomogeneities induced by disorder. Distribution functions such as these have not hitherto been measured but should be experimentally accessible.Comment: 10 pages revtex 4 figure

    Dendritic flux patterns in MgB2 films

    Full text link
    Magneto-opitcal studies of a c-oriented epitaxial MgB2 film with critical current density 10^7 A/cm^2 demonstrate a breakdown of the critical state at temperatures below 10 K [cond-mat/0104113]. Instead of conventional uniform and gradual flux penetration in an applied magnetic field, we observe an abrupt invasion of complex dendritic structures. When the applied field subsequently decreases, similar dendritic structures of the return flux penetrate the film. The static and dynamic properties of the dendrites are discussed.Comment: Accepted to Supercond. Sci. Techno
    corecore