21 research outputs found
Characterisation and tracking of membrane surfaces at NASA Langley Research Centre
Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and
orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be noncontact,
accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple,
synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable
accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture
surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data
outputs are described
New sterols with anti-inflammatory potentials against cyclooxygenase-2 and 5-lipoxygenase from Paphia malabarica
Seasonal photosynthetic gas exchange and water-use efficiency in a constitutive CAM plant, the giant saguaro cactus (Carnegiea gigantea)
Recommended from our members
SPACE TELESCOPE and OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION and BROADBAND TIME DELAYS in NGC 5548
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in nine filters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Å to the z band (∼9160 Å). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He ii and λ1640 and λ4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with τ ∝ λ 4 . However, the lags also imply a disk radius that is 3 times larger than the prediction from standard thin-disk theory, assuming that the bolometric luminosity is 10% of the Eddington luminosity (L = 0.1 L Edd ). Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lags due to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination (∼20%) can be important for the shortest continuum lags and likely has a significant impact on the u and U bands owing to Balmer continuum emission
Recommended from our members
SPACE TELESCOPE and OPTICAL REVERBERATION MAPPING PROJECT. III. OPTICAL CONTINUUM EMISSION and BROADBAND TIME DELAYS in NGC 5548
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in nine filters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Å to the z band (∼9160 Å). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He ii and λ1640 and λ4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with τ ∝ λ . However, the lags also imply a disk radius that is 3 times larger than the prediction from standard thin-disk theory, assuming that the bolometric luminosity is 10% of the Eddington luminosity (L = 0.1 L ). Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lags due to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination (∼20%) can be important for the shortest continuum lags and likely has a significant impact on the u and U bands owing to Balmer continuum emission. 4 Ed
