131 research outputs found
The structure of Gelfand-Levitan-Marchenko type equations for Delsarte transmutation operators of linear multi-dimensional differential operators and operator pencils. Part 1
An analog of Gelfand-Levitan-Marchenko integral equations for multi-
dimensional Delsarte transmutation operators is constructed by means of
studying their differential-geometric structure based on the classical Lagrange
identity for a formally conjugated pair of differential operators. An extension
of the method for the case of affine pencils of differential operators is
suggested.Comment: 12 page
Transversely projective foliations on surfaces: existence of normal forms and prescription of the monodromy
We introduce a notion of normal form for transversely projective structures
of singular foliations on complex manifolds. Our first main result says that
this normal form exists and is unique when ambient space is two-dimensional.
From this result one obtains a natural way to produce invariants for
transversely projective foliations on surfaces. Our second main result says
that on projective surfaces one can construct singular transversely projective
foliations with prescribed monodromy
On the geometry of mixed states and the Fisher information tensor
In this paper, we will review the co-adjoint orbit formulation of finite
dimensional quantum mechanics, and in this framework, we will interpret the
notion of quantum Fisher information index (and metric). Following previous
work of part of the authors, who introduced the definition of Fisher
information tensor, we will show how its antisymmetric part is the pullback of
the natural Kostant-Kirillov-Souriau symplectic form along some natural
diffeomorphism. In order to do this, we will need to understand the symmetric
logarithmic derivative as a proper 1-form, settling the issues about its very
definition and explicit computation. Moreover, the fibration of co-adjoint
orbits, seen as spaces of mixed states, is also discussed.Comment: 27 pages; Accepted Manuscrip
New insights in particle dynamics from group cohomology
The dynamics of a particle moving in background electromagnetic and
gravitational fields is revisited from a Lie group cohomological perspective.
Physical constants characterising the particle appear as central extension
parameters of a group which is obtained from a centrally extended kinematical
group (Poincare or Galilei) by making local some subgroup. The corresponding
dynamics is generated by a vector field inside the kernel of a presymplectic
form which is derived from the canonical left-invariant one-form on the
extended group. A non-relativistic limit is derived from the geodesic motion
via an Inonu-Wigner contraction. A deeper analysis of the cohomological
structure reveals the possibility of a new force associated with a non-trivial
mixing of gravity and electromagnetism leading to in principle testable
predictions.Comment: 8 pages, LaTeX, no figures. To appear in J. Phys. A (Letter to the
editor
A variational principle for volume-preserving dynamics
We provide a variational description of any Liouville (i.e. volume
preserving) autonomous vector fields on a smooth manifold. This is obtained via
a ``maximal degree'' variational principle; critical sections for this are
integral manifolds for the Liouville vector field. We work in coordinates and
provide explicit formulae
Variational principles for involutive systems of vector fields
In many relevant cases -- e.g., in hamiltonian dynamics -- a given vector
field can be characterized by means of a variational principle based on a
one-form. We discuss how a vector field on a manifold can also be characterized
in a similar way by means of an higher order variational principle, and how
this extends to involutive systems of vector fields.Comment: 31 pages. To appear in International Journal of Geometric Methods in
Modern Physics (IJGMMP
Hamiltonian dynamics and constrained variational calculus: continuous and discrete settings
The aim of this paper is to study the relationship between Hamiltonian
dynamics and constrained variational calculus. We describe both using the
notion of Lagrangian submanifolds of convenient symplectic manifolds and using
the so-called Tulczyjew's triples. The results are also extended to the case of
discrete dynamics and nonholonomic mechanics. Interesting applications to
geometrical integration of Hamiltonian systems are obtained.Comment: 33 page
The "Symplectic Camel Principle" and Semiclassical Mechanics
Gromov's nonsqueezing theorem, aka the property of the symplectic camel,
leads to a very simple semiclassical quantiuzation scheme by imposing that the
only "physically admissible" semiclassical phase space states are those whose
symplectic capacity (in a sense to be precised) is nh + (1/2)h where h is
Planck's constant. We the construct semiclassical waveforms on Lagrangian
submanifolds using the properties of the Leray-Maslov index, which allows us to
define the argument of the square root of a de Rham form.Comment: no figures. to appear in J. Phys. Math A. (2002
A Tonnetz Model for pentachords
This article deals with the construction of surfaces that are suitable for
representing pentachords or 5-pitch segments that are in the same class.
It is a generalization of the well known \"Ottingen-Riemann torus for triads of
neo-Riemannian theories. Two pentachords are near if they differ by a
particular set of contextual inversions and the whole contextual group of
inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A
description of the surfaces as coverings of a particular Tiling is given in the
twelve-tone enharmonic scale case.Comment: 27 pages, 12 figure
- …
