199 research outputs found
Macrophage cytoplasmic transfer in melanoma invasion
Within tumors, macrophage infiltration can promote cancer cell invasiveness and consequently, metastatic dissemination. In this issue of Developmental Cell, Roh-Johnson et al. (2017) reveal that cytoplasmic transfer from macrophages to melanoma cells correlates with melanoma invasion and arises as a result of intimate cell-cell contact
MC1R FUNCTIONS, EXPRESSION, AND IMPLICATIONS FOR TARGETED THERAPY
The G protein-coupled MC1R is expressed in melanocytes and has a pivotal role in human skin pigmentation, with reduced function in human genetic variants exhibiting a red hair phenotype and
increased melanoma predisposition. Beyond its role in pigmentation, MC1R is increasingly recognized as promoting UV-induced DNA damage repair. Consequently, there is mounting interest in targeting MC1R for therapeutic benefit. However, whether MC1R expression is restricted to melanocytes or is more widely expressed remains a matter of debate. In this paper, we review MC1R function and highlight that unbiased analysis suggests that its expression is restricted to melanocytes, granulocytes, and the brain
Melanoma plasticity and phenotypic diversity: therapeutic barriers and opportunities
An incomplete view of the mechanisms that drive metastasis, the primary cause of cancer-related death, has been a major barrier to development of effective therapeutics and prognostic diagnostics. Increasing evidence indicates that the interplay between microenvironment, genetic lesions, and cellular plasticity drives the metastatic cascade and resistance to therapies. Here, using melanoma as a model, we outline the diversity and trajectories of cell states during metastatic dissemination and therapy exposure, and highlight how understanding the magnitude and dynamics of nongenetic reprogramming in space and time at single-cell resolution can be exploited to develop therapeutic strategies that capitalize on nongenetic tumor evolution
The Development of Linguistic Competences for Employability: A Training Project for Teachers
AbstractEmployability is a new concept that has just appeared in the Spanish educational system. Its rising importance is due to European Union educational policies which aim to provide young people with training that enables them to take part successfully in the present and future working world.This paper argues for the need to develop employability from the very start of formal education, and within this, we highlight the importance of developing linguistic competence among pre-school and primary pupils as a key element for favouring employability.To be able to do so, the teaching staff must be trained using quality education to enable them to work effectively on this competence. In this paper we present how a training program, with a specific European dimension, has been designed by a state school from the Valencian Community, to serve as a model for other schools concerned about the development of a linguistic competence that helps to improve both teachers’ and pupils’ employability
A high-throughput drug repurposing strategy to treat TBX2 and/or TBX3 dependent cancers
Background: The highly homologous T-box transcription factors TBX2 and TBX3 are critical for embryonic development, and their overexpression in postnatal tissues contributes to a wide range of malignancies, including melanoma and rhabdomyosarcoma. Importantly, when TBX2 and TBX3 are depleted in cancers where they are overexpressed, the malignant phenotype is inhibited, and they have therefore been regarded as druggable targets. However, the time and costs associated with de novo drug development are challenging and result in drugs that are costly, especially for patients in low- and middle-income countries. In the current study, we therefore combined a targeted and drug repurposing approach to identify drugs that are expected to be more efficacious and cost-effective with significantly reduced side effects.
Method: A high-throughput cell-based immunofluorescence screen was performed to identify drugs in the Pharmakon 1600 drug library that can negatively regulate TBX2 and/or TBX3 levels. “Hit” drugs were validated for their effect on TBX2/TBX3 levels and cytotoxicity in TBX2/TBX3-dependent melanoma and rhabdomyosarcoma cells. To this end, immunofluorescence, western blotting, quantitative real-time PCR, and MTT cell viability assays were performed.
Results: Niclosamide, piroctone olamine, and pyrvinium pamoate, were identified as TBX2 and/or TBX3-targeting drugs, and they exhibited cytotoxicity in a TBX2/TBX3-dependent manner. Furthermore, these “Hit” drugs were shown to induce senescence and/or apoptosis.
Conclusions: Niclosamide, piroctone olamine, and pyrvinium pamoate are promising, cost-effective therapeutic agents for the treatment of TBX2/TBX3-dependent cancers
KITD816V induces SRC-mediated tyrosine phosphorylation of MITF and altered transcription program in melanoma
The oncogenic D816V mutation of the KIT receptor is well characterized in systemic mastocytosis and acute myeloid leukemia. Although KITD816V has been found in melanoma, its function and involvement in this malignancy is not understood. Here we show that KITD816V induces tyrosine phosphorylation of MITF through a triple protein complex formation between KIT, MITF and SRC family kinases. In turn, phosphorylated MITF activates target genes that are involved in melanoma proliferation, cell cycle progression, suppression of senescence, survival and invasion. By blocking the triple protein complex formation, thus preventing MITF phosphorylation, the cells became hypersensitive to SRC inhibitors. We have therefore delineated a mechanism behind the oncogenic effects of KITD816V in melanoma and provided a rationale for the heightened SRC inhibitor sensitivity in KITD816V transformed cells. Implications: This study demonstrates that an oncogenic tyrosine kinase mutant, KIT-D816V, can alter the transcriptional program of the transcription factor MITF in melanoma
Tbx2 Is Overexpressed and Plays an Important Role in Maintaining Proliferation and Suppression of Senescence in Melanomas
- …
