7,383 research outputs found
Fearless: Professor Janet Powers and Linnea Goebel
This week we would like to recognize Professor Janet Powers and recent graduate Linnea Goebel ’13 for their work in Bosnia this summer helping to set up a group of female embroiderers with an Amazon Marketplace account to sell their wares on the internet. [excerpt
Integrated infrared array technology
An overview of integrated infrared (IR) array technology is presented. Although the array pixel formats are smaller, and the readout noise of IR arrays is larger, than the corresponding values achieved with optical charge-coupled-device silicon technology, substantial progress is being made in IR technology. Both existing IR arrays and those being developed are described. Examples of astronomical images are given which illustrate the potential of integrated IR arrays for scientific investigations
Evolution and Analysis of Embodied Spiking Neural Networks Reveals Task-Specific Clusters of Effective Networks
Elucidating principles that underlie computation in neural networks is
currently a major research topic of interest in neuroscience. Transfer Entropy
(TE) is increasingly used as a tool to bridge the gap between network
structure, function, and behavior in fMRI studies. Computational models allow
us to bridge the gap even further by directly associating individual neuron
activity with behavior. However, most computational models that have analyzed
embodied behaviors have employed non-spiking neurons. On the other hand,
computational models that employ spiking neural networks tend to be restricted
to disembodied tasks. We show for the first time the artificial evolution and
TE-analysis of embodied spiking neural networks to perform a
cognitively-interesting behavior. Specifically, we evolved an agent controlled
by an Izhikevich neural network to perform a visual categorization task. The
smallest networks capable of performing the task were found by repeating
evolutionary runs with different network sizes. Informational analysis of the
best solution revealed task-specific TE-network clusters, suggesting that
within-task homogeneity and across-task heterogeneity were key to behavioral
success. Moreover, analysis of the ensemble of solutions revealed that
task-specificity of TE-network clusters correlated with fitness. This provides
an empirically testable hypothesis that links network structure to behavior.Comment: Camera ready version of accepted for GECCO'1
Quantized vortices around wavefront nodes, 2
Quantized vortices can occur around nodal points in wavefunctions. The derivation depends only on the wavefunction being single valued, continuous, and having continuous first derivatives. Since the derivation does not depend upon the dynamical equations, the quantized vortices are expected to occur for many types of waves such as electromagnetic and acoustic. Such vortices have appeared in the calculations of the H + H2 molecular collisions and play a role in the chemical kinetics. In a companion paper, it is shown that quantized vortices occur when optical waves are internally reflected from the face of a prism or particle beams are reflected from potential energy barriers
Low-background performance of a monolithic InSb CCD array
A 20 element monolithic InSb charge coupled device (CCD) detector array was measured under low background conditions to assess its potential for orbital astronomical applications. At a temperature of 64 K, previous results for charge transfer efficiency (CTE) were reproduced, and a sensitivity of about 2 x 10 to the minus 15th power joules was measured. At 27 and 6 K, extended integration times were achieved, but CTE was substantially degraded. The noise was approximately 6000 charges, which was in excess of the level where statistical fluctuations from the illumination could be detected. A telescope demonstration was performed showing that the array sensitivity and difficulty of operation were not substantially different from laboratory levels. Ways in which the device could be improved for astronomical applications were discussed
Performance of charge-injection-device infrared detector arrays at low and moderate backgrounds
Three 2 x 64 element charge injection device infrared detector arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications
Detector arrays for low-background space infrared astronomy
The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications
Universality of Regge and vibrational trajectories in a semiclassical model
The orbital and radial excitations of light-light mesons are studied in the
framework of the dominantly orbital state description. The equation of motion
is characterized by a relativistic kinematics supplemented by the usual funnel
potential with a mixed scalar and vector confinement. The influence of finite
quark masses and potential parameters on Regge and vibrational trajectories is
discussed. The case of heavy-light mesons is also presented.Comment: 12 page
Salmonella typhimurium strains carrying hemolysin plasmids and cloned hemolysin. genes from Escherichia coli
Like all other Salmonella typhimurium strains examined, the smooth variants SF1397 (L T2) and 1366 and also their semi-rough and rough derivatives are non-haemolytic. Nevertheless, two haemolysin (Hly) plasmids of E. coli belonging to the inc groups incFllI,lv (pSU316) and incIz (pHly152) were able to be introduced into these strains by conjugation and stably maintained. A considerable percentage of the Hly+ transconjugants obtained had lost parts of their O-side chains, a result of selection for the better recipient capability of « semi-rough» variants rather than the direct influence of the Hly+ plasmids themselves. In contrast to the incF1lI1V plasmid pSU316, which exhibited higher conjugation rates with rough recipients, the incIz plasmid pHly152 was accepted best by smooth strains. Transformation with cloned E. coli haemolysin (hly) determinant was inefficient ( <10-8) for smooth strains, but 102-103 times higher for rough recipients, and was increased by the use of Salmonella-modified DNA. The transform ants and transconjugants were relatively stable and showed the same haemolytic activity as the E. coli donor strains. The virulence of the Hly+ smooth, semi-rough and rough S. typhimurium strains was tested in two mouse models, and neither the mortality rate nor the ability to multiply within the mouse spleen was influenced by the hly determinants
- …
