228 research outputs found

    Structure–performance descriptors and the role of Lewis acidity in the methanol-to-propylene process

    Get PDF
    The combination of well-defined acid sites, shape-selective properties and outstanding stability places zeolites among the most practically relevant heterogeneous catalysts. The development of structure-performance descriptors for processes that they catalyse has been a matter of intense debate, both in industry and academia, and the direct conversion of methanol to olefins is a prototypical system in which various catalytic functions contribute to the overall performance. Propylene selectivity and resistance to coking are the two most important parameters in developing new methanol-to-olefin catalysts. Here, we present a systematic investigation on the effect of acidity on the performance of the zeolite 'ZSM-5' for the production of propylene. Our results demonstrate that the isolation of Bronsted acid sites is key to the selective formation of propylene. Also, the introduction of Lewis acid sites prevents the formation of coke, hence drastically increasing catalyst lifetime

    Sedimentology and facies analysis of ancient sand ridges:Jurassic Rogn Formation, Trøndelag Platform, offshore Norway

    Get PDF
    Sand ridges represent a common type of sedimentary bedform of modern shelves seldom used as analogues to interpret isolated marine sandbodies recognised in the subsurface. Lack of extended literature on outcrop and subsurface examples limits the possibility for their recognition and seems one of the reason behind this underrepresentation. The Draugen discovery made in the early 80`s represents an unicum in the Trøndelag Platform, offshore Norway. After more than 30 years the Froan Basin and Frøya High area are still underexplored and the Late Jurassic Rogn Fm play not well understood. Predicting reservoir distribution, and its internal architecture and properties requires the understanding of factors controlling sedimentation (e.g. palaeocirculation, depositional processes). North-south elongated sandbodies pertaining to the Rogn Formation are recognised in the Froan Basin and Frøya High encased within thick shaly deposits. Sandbodies develop above a ravinement or flooding surface (i.e. Callovian Unconformity) of regional extent where local depressions occur with a non-erosional concave-up top. Depressions representing the depositional loci for the accumulation of sand and development of the ridge. The presence of eastward and westward dipping reflections within the sandbodies allows identifying their large-scale architectures. Sediments form coarsening-upward vertical units characterised by a shaly base evolving upwards to medium- and coarse-grained sand forming tabular and trough cross strata. Locally, a fining upward trend characterised by plane-parallel stratification and coarse-grained massive layers is recognised. Sediments results well organised and sorted, which positively affects final porosity and permeability with values up to 30% and 6 Darcy, respectively - typical values for many sand ridges. Accordingly, sand ridges encased within thick shaly deposits can form stratigraphic traps with the potential for large hydrocarbon accumulations. The aim of the present study is to help the understanding of distribution, and internal architectures and properties of the Rogn Fm in the Trøndelag Platform

    Co@NH 2

    Get PDF
    We present a synthetic strategy for the efficient encapsulation of a deriv. of a well-​defined cobaloxime proton redn. catalyst within a photoresponsive metal-​org. framework (NH2- MIL-​125(Ti)​)​. The resulting hybrid system Co@MOF is demonstrated to be a robust heterogeneous composite material. Furthermore, Co@MOF is an efficient and fully recyclable noble metal-​free catalyst system for light-​driven hydrogen evolution from water under visible light illumination

    Kolom, huis en stad

    No full text

    Hygrothermal simulation model

    No full text

    Crystal engineering with metal-organic frameworks

    No full text
    Chemical EngineeringApplied Science
    corecore