516 research outputs found

    Predictability sieve, pointer states, and the classicality of quantum trajectories

    Full text link
    We study various measures of classicality of the states of open quantum systems subject to decoherence. Classical states are expected to be stable in spite of decoherence, and are thought to leave conspicuous imprints on the environment. Here these expected features of environment-induced superselection (einselection) are quantified using four different criteria: predictability sieve (which selects states that produce least entropy), purification time (which looks for states that are the easiest to find out from the imprint they leave on the environment), efficiency threshold (which finds states that can be deduced from measurements on a smallest fraction of the environment), and purity loss time (that looks for states for which it takes the longest to lose a set fraction of their initial purity). We show that when pointer states -- the most predictable states of an open quantum system selected by the predictability sieve -- are well defined, all four criteria agree that they are indeed the most classical states. We illustrate this with two examples: an underdamped harmonic oscillator, for which coherent states are unanimously chosen by all criteria, and a free particle undergoing quantum Brownian motion, for which most criteria select almost identical Gaussian states (although, in this case, predictability sieve does not select well defined pointer states.)Comment: 10 pages, 13 figure

    Optimization of water use for field crop production in the upper Midwest

    Get PDF
    This project investigated combinations of both irrigation and drainage treatments in order to determine the best water management practices for field crop production in claypan soils in the upper Midwest. Four years of corn and one year of soybean yield data from forty field plots are presented. The irrigation treatments were sprinkler, furrow, and no irrigation; the drainage treatments were surface, subsurface, surface plus subsurface, and no drainage. The plots were located on a claypan soil in south-central Illinois. Sprinkler irrigation was provided by a solid set system. Furrow irrigation was done with gated pipes. The plots with surface drainage had a slope of 0.5%; the others were graded level. Subsurface drainage was provided by plastic tubing on 20-ft centers. Drainage water from the plots and surrounding areas was stored in ponds and recycled as irrigation water. The data indicate average corn yield increases of 13 and 50 bu/acre due to drainage and irrigation, respectively. Together, they act synergistically to produce an average yield increase of 92 bu/acre. This synergistic yield increase provides economic impetus to combining irrigation and drainage systems and storing drainage water in ponds or lakes for later use in irrigation. This combination will have the added effect of conserving water resources, of improving water use efficiency and downstream water quality, and of lessening downstream flooding.U.S. Geological SurveyU.S. Department of the InteriorOpe

    Cat States and Single Runs for the Damped Harmonic Oscillator

    Full text link
    We discuss the fate of initial states of the cat type for the damped harmonic oscillator, mostly employing a linear version of the stochastic Schr\"odinger equation. We also comment on how such cat states might be prepared and on the relation of single realizations of the noise to single runs of experiments.Comment: 18, Revte

    Optimal control of entanglement via quantum feedback

    Get PDF
    It has recently been shown that finding the optimal measurement on the environment for stationary Linear Quadratic Gaussian control problems is a semi-definite program. We apply this technique to the control of the EPR-correlations between two bosonic modes interacting via a parametric Hamiltonian at steady state. The optimal measurement turns out to be nonlocal homodyne measurement -- the outputs of the two modes must be combined before measurement. We also find the optimal local measurement and control technique. This gives the same degree of entanglement but a higher degree of purity than the local technique previously considered [S. Mancini, Phys. Rev. A {\bf 73}, 010304(R) (2006)].Comment: 10 pages, 5 figure

    Conditional quantum dynamics with several observers

    Full text link
    We consider several observers who monitor different parts of the environment of a single quantum system and use their data to deduce its state. We derive a set of conditional stochastic master equations that describe the evolution of the density matrices each observer ascribes to the system under the Markov approximation, and show that this problem can be reduced to the case of a single "super-observer", who has access to all the acquired data. The key problem - consistency of the sets of data acquired by different observers - is then reduced to the probability that a given combination of data sets will be ever detected by the "super-observer". The resulting conditional master equations are applied to several physical examples: homodyne detection of phonons in quantum Brownian motion, photo-detection and homodyne detection of resonance fluorescence from a two-level atom. We introduce {\it relative purity} to quantify the correlations between the information about the system gathered by different observers from their measurements of the environment. We find that observers gain the most information about the state of the system and they agree the most about it when they measure the environment observables with eigenstates most closely correlated with the optimally predictable {\it pointer basis} of the system.Comment: Updated version: new title and contents. 22 pages, 8 figure

    Generalized stochastic Schroedinger equations for state vector collapse

    Get PDF
    A number of authors have proposed stochastic versions of the Schr\"odinger equation, either as effective evolution equations for open quantum systems or as alternative theories with an intrinsic collapse mechanism. We discuss here two directions for generalization of these equations. First, we study a general class of norm preserving stochastic evolution equations, and show that even after making several specializations, there is an infinity of possible stochastic Schr\"odinger equations for which state vector collapse is provable. Second, we explore the problem of formulating a relativistic stochastic Schr\"odinger equation, using a manifestly covariant equation for a quantum field system based on the interaction picture of Tomonaga and Schwinger. The stochastic noise term in this equation can couple to any local scalar density that commutes with the interaction energy density, and leads to collapse onto spatially localized eigenstates. However, as found in a similar model by Pearle, the equation predicts an infinite rate of energy nonconservation proportional to δ3(0)\delta^3(\vec 0), arising from the local double commutator in the drift term.Comment: 24 pages Plain TeX. Minor changes, some new references. To appear in Journal of Physics

    Stochastic simulations of conditional states of partially observed systems, quantum and classical

    Get PDF
    In a partially observed quantum or classical system the information that we cannot access results in our description of the system becoming mixed even if we have perfect initial knowledge. That is, if the system is quantum the conditional state will be given by a state matrix ρr(t)\rho_r(t) and if classical the conditional state will be given by a probability distribution Pr(x,t)P_r(x,t) where rr is the result of the measurement. Thus to determine the evolution of this conditional state under continuous-in-time monitoring requires an expensive numerical calculation. In this paper we demonstrating a numerical technique based on linear measurement theory that allows us to determine the conditional state using only pure states. That is, our technique reduces the problem size by a factor of NN, the number of basis states for the system. Furthermore we show that our method can be applied to joint classical and quantum systems as arises in modeling realistic measurement.Comment: 16 pages, 11 figure

    Targeting qubit states using open-loop control

    Get PDF
    We present an open-loop (bang-bang) scheme which drives an open two-level quantum system to any target state, while maintaining quantum coherence throughout the process. The control is illustrated by a realistic simulation for both adiabatic and thermal decoherence. In the thermal decoherence regime, the control achieved by the proposed scheme is qualitatively similar, at the ensemble level, to the control realized by the quantum feedback scheme of Wang, Wiseman, and Milburn [Phys. Rev. A 64, #063810 (2001)] for the spontaneous emission of a two-level atom. The performance of the open-loop scheme compares favorably against the quantum feedback scheme with respect to robustness, target fidelity and transition times.Comment: 27 pages, 7 figure

    Sensitivity optimization in quantum parameter estimation

    Get PDF
    We present a general framework for sensitivity optimization in quantum parameter estimation schemes based on continuous (indirect) observation of a dynamical system. As an illustrative example, we analyze the canonical scenario of monitoring the position of a free mass or harmonic oscillator to detect weak classical forces. We show that our framework allows the consideration of sensitivity scheduling as well as estimation strategies for non-stationary signals, leading us to propose corresponding generalizations of the Standard Quantum Limit for force detection.Comment: 15 pages, RevTe
    corecore