7 research outputs found
Evidence for a low-lying triplet excited state in octachlorodirhenate(III): Breaking bonds in high magnetic fields.
Recommended from our members
Studies of the correlated electron system SmB6
We have prepared high-quality, single crystals of SmB6 under various conditions to improve sample quality. We have measured the resistivity and magnetic susceptibility from room to liquid-helium temperatures to sort samples. We have applied pulsed magnetic fields as high as 50 T at temperatures as low as 40 mK while measuring resistivity. Our samples are of higher quality than previously known. All solvent-grown, single-crystal samples should be etched to remove a surface conductivity
Recommended from our members
Studies of the correlated electron system SmB6
We have prepared high-quality, single crystals of SmB6 under various conditions to improve sample quality. We have measured the resistivity and magnetic susceptibility from room to liquid-helium temperatures to sort samples. We have applied pulsed magnetic fields as high as 50 T at temperatures as low as 40 mK while measuring resistivity. Our samples are of higher quality than previously known. All solvent-grown, single-crystal samples should be etched to remove a surface conductivity
Low temperature electrical transprot measurements of in-plane critical field for YBCO in magnetic fields to 800T
Recommended from our members
The Dirac experiments - results and challenges
The 1997 international Dirac II Series held at Los Alamos National Laboratory involved low temperature electrical transport and optical experiments in magnetic fields exceeding 800%, produced by explosive flux compression using Russian MC-1 generators. An overview of the scientific and technical advances achieved in this Series is given, together with a strategy for future work in this challenging experimental environment. A significant outcome was achieved in transport studies of microfabricated thin-film YBCO structures with the magnetic field in the CuO plane. Using a GHz transmission line technique at an ambient temperature of 1.6 K, an onset of dissipation was observed at 150 T (a new upper bound for superconductivity in any material), with a saturation of resistivity at 240 T. Comparison with the Pauli limit expected at B=155 T in this material suggests that the critical field in this geometry is limited by spin paramagnetism. In preparation for a Diract III series, a systematic temperature-dependent transport study of YBCO using in-plane magnetic fields of 150 T generated by single-turn coils, at temperatures over the range 10-100 K, has been undertaken in collaboration with the Japanese Megagauss Laboratory. The objective is to map out the phase diagram for this geometry, which is expected to be significantly different than the Werthamer-Helfand-Hohenberg model, due to the presence of paramagnetic limiting. Nanofabricated magnetometers have also been developed in a UNSW-LANL collaboration for use in Dirac III for Fermi surface measurements of YBCO in megagauss fields, which are described
