17,638 research outputs found
Branching process approach for Boolean bipartite networks of metabolic reactions
The branching process (BP) approach has been successful in explaining the
avalanche dynamics in complex networks. However, its applications are mainly
focused on unipartite networks, in which all nodes are of the same type. Here,
motivated by a need to understand avalanche dynamics in metabolic networks, we
extend the BP approach to a particular bipartite network composed of Boolean
AND and OR logic gates. We reduce the bipartite network into a unipartite
network by integrating out OR gates, and obtain the effective branching ratio
for the remaining AND gates. Then the standard BP approach is applied to the
reduced network, and the avalanche size distribution is obtained. We test the
BP results with simulations on the model networks and two microbial metabolic
networks, demonstrating the usefulness of the BP approach
Robustness of the avalanche dynamics in data packet transport on scale-free networks
We study the avalanche dynamics in the data packet transport on scale-free
networks through a simple model. In the model, each vertex is assigned a
capacity proportional to the load with a proportionality constant . When
the system is perturbed by a single vertex removal, the load of each vertex is
redistributed, followed by subsequent failures of overloaded vertices. The
avalanche size depends on the parameter as well as which vertex triggers
it. We find that there exists a critical value at which the avalanche
size distribution follows a power law. The critical exponent associated with it
appears to be robust as long as the degree exponent is between 2 and 3, and is
close in value to that of the distribution of the diameter changes by single
vertex removal.Comment: 5 pages, 7 figures, final version published in PR
Classification of scale-free networks
While the emergence of a power law degree distribution in complex networks is
intriguing, the degree exponent is not universal. Here we show that the
betweenness centrality displays a power-law distribution with an exponent \eta
which is robust and use it to classify the scale-free networks. We have
observed two universality classes with \eta \approx 2.2(1) and 2.0,
respectively. Real world networks for the former are the protein interaction
networks, the metabolic networks for eukaryotes and bacteria, and the
co-authorship network, and those for the latter one are the Internet, the
world-wide web, and the metabolic networks for archaea. Distinct features of
the mass-distance relation, generic topology of geodesics and resilience under
attack of the two classes are identified. Various model networks also belong to
either of the two classes while their degree exponents are tunable.Comment: 6 Pages, 6 Figures, 1 tabl
Betweenness centrality correlation in social networks
Scale-free (SF) networks exhibiting a power-law degree distribution can be
grouped into the assortative, dissortative and neutral networks according to
the behavior of the degree-degree correlation coefficient. Here we investigate
the betweenness centrality (BC) correlation for each type of SF networks. While
the BC-BC correlation coefficients behave similarly to the degree-degree
correlation coefficients for the dissortative and neutral networks, the BC
correlation is nontrivial for the assortative ones found mainly in social
networks. The mean BC of neighbors of a vertex with BC is almost
independent of , implying that each person is surrounded by almost the
same influential environments of people no matter how influential the person
is.Comment: 4 pages, 4 figures, 1 tabl
Nonlocal evolution of weighted scale-free networks
We introduce the notion of globally updating evolution for a class of
weighted networks, in which the weight of a link is characterized by the amount
of data packet transport flowing through it. By noting that the packet
transport over the network is determined nonlocally, this approach can explain
the generic nonlinear scaling between the strength and the degree of a node. We
demonstrate by a simple model that the strength-driven evolution scheme
recently introduced can be generalized to a nonlinear preferential attachment
rule, generating the power-law behaviors in degree and in strength
simultaneously.Comment: 4 pages, 4 figures, final version published in PR
Germline genetic variation in prostate susceptibility does not predict outcomes in the chemoprevention trials PCPT and SELECT
Background
The development of prostate cancer can be influenced by genetic and environmental factors. Numerous germline SNPs influence prostate cancer susceptibility. The functional pathways in which these SNPs increase prostate cancer susceptibility are unknown. Finasteride is currently not being used routinely as a chemoprevention agent but the long term outcomes of the PCPT trial are awaited. The outcomes of the SELECT trial have not recommended the use of chemoprevention in preventing prostate cancer. This study investigated whether germline risk SNPs could be used to predict outcomes in the PCPT and SELECT trial.
Methods
Genotyping was performed in European men entered into the PCPT trial (n = 2434) and SELECT (n = 4885). Next generation genotyping was performed using Affymetrix® Eureka™ Genotyping protocols. Logistic regression models were used to test the association of risk scores and the outcomes in the PCPT and SELECT trials.
Results
Of the 100 SNPs, 98 designed successfully and genotyping was validated for samples genotyped on other platforms. A number of SNPs predicted for aggressive disease in both trials. Men with a higher polygenic score are more likely to develop prostate cancer in both trials, but the score did not predict for other outcomes in the trial.
Conclusion
Men with a higher polygenic risk score are more likely to develop prostate cancer. There were no interactions of these germline risk SNPs and the chemoprevention agents in the SELECT and PCPT trials
- …
