858 research outputs found

    Statistical mechanics of permanent random atomic and molecular networks: Structure and heterogeneity of the amorphous solid state

    Full text link
    Under sufficient permanent random covalent bonding, a fluid of atoms or small molecules is transformed into an amorphous solid network. Being amorphous, local structural properties in such networks vary across the sample. A natural order parameter, resulting from a statistical-mechanical approach, captures information concerning this heterogeneity via a certain joint probability distribution. This joint probability distribution describes the variations in the positional and orientational localization of the particles, reflecting the random environments experienced by them, as well as further information characterizing the thermal motion of particles. A complete solution, valid in the vicinity of the amorphous solidification transition, is constructed essentially analytically for the amorphous solid order parameter, in the context of the random network model and approach introduced by Goldbart and Zippelius [Europhys. Lett. 27, 599 (1994)]. Knowledge of this order parameter allows us to draw certain conclusions about the stucture and heterogeneity of randomly covalently bonded atomic or molecular network solids in the vicinity of the amorphous solidification transition. Inter alia, the positional aspects of particle localization are established to have precisely the structure obtained perviously in the context of vulcanized media, and results are found for the analogue of the spin glass order parameter describing the orientational freezing of the bonds between particles.Comment: 31 pages, 5 figure

    Intrinsic resistivity and the SO(5) theory of high-temperature superconductors

    Get PDF
    The topological structure of the order parameter in Zhang's SO(5) theory of superconductivity allows for an unusual type of dissipation mechanism via which current-carrying states can decay. The resistivity due to this mechanism, which involves orientation rather than amplitude order-parameter fluctuations, is calculated for the case of a thin superconducting wire. The approach is a suitably modified version of that pioneered by Langer and Ambegaokar for conventional superconductors.Comment: 4 pages, including 1 figure (REVTEX); references added, minor corrections mad

    Universality and its Origins at the Amorphous Solidification Transition

    Full text link
    Systems undergoing an equilibrium phase transition from a liquid state to an amorphous solid state exhibit certain universal characteristics. Chief among these are the fraction of particles that are randomly localized and the scaling functions that describe the order parameter and (equivalently) the statistical distribution of localization lengths for these localized particles. The purpose of this Paper is to discuss the origins and consequences of this universality, and in doing so, three themes are explored. First, a replica-Landau-type approach is formulated for the universality class of systems that are composed of extended objects connected by permanent random constraints and undergo amorphous solidification at a critical density of constraints. This formulation generalizes the cases of randomly cross-linked and end-linked macromolecular systems, discussed previously. The universal replica free energy is constructed, in terms of the replica order parameter appropriate to amorphous solidification, the value of the order parameter is obtained in the liquid and amorphous solid states, and the chief universal characteristics are determined. Second, the theory is reformulated in terms of the distribution of local static density fluctuations rather than the replica order parameter. It is shown that a suitable free energy can be constructed, depending on the distribution of static density fluctuations, and that this formulation yields precisely the same conclusions as the replica approach. Third, the universal predictions of the theory are compared with the results of extensive numerical simulations of randomly cross-linked macromolecular systems, due to Barsky and Plischke, and excellent agreement is found.Comment: 10 pages, including 3 figures (REVTEX
    corecore