858 research outputs found
Statistical mechanics of permanent random atomic and molecular networks: Structure and heterogeneity of the amorphous solid state
Under sufficient permanent random covalent bonding, a fluid of atoms or small
molecules is transformed into an amorphous solid network. Being amorphous,
local structural properties in such networks vary across the sample. A natural
order parameter, resulting from a statistical-mechanical approach, captures
information concerning this heterogeneity via a certain joint probability
distribution. This joint probability distribution describes the variations in
the positional and orientational localization of the particles, reflecting the
random environments experienced by them, as well as further information
characterizing the thermal motion of particles. A complete solution, valid in
the vicinity of the amorphous solidification transition, is constructed
essentially analytically for the amorphous solid order parameter, in the
context of the random network model and approach introduced by Goldbart and
Zippelius [Europhys. Lett. 27, 599 (1994)]. Knowledge of this order parameter
allows us to draw certain conclusions about the stucture and heterogeneity of
randomly covalently bonded atomic or molecular network solids in the vicinity
of the amorphous solidification transition. Inter alia, the positional aspects
of particle localization are established to have precisely the structure
obtained perviously in the context of vulcanized media, and results are found
for the analogue of the spin glass order parameter describing the orientational
freezing of the bonds between particles.Comment: 31 pages, 5 figure
Intrinsic resistivity and the SO(5) theory of high-temperature superconductors
The topological structure of the order parameter in Zhang's SO(5) theory of
superconductivity allows for an unusual type of dissipation mechanism via which
current-carrying states can decay. The resistivity due to this mechanism, which
involves orientation rather than amplitude order-parameter fluctuations, is
calculated for the case of a thin superconducting wire. The approach is a
suitably modified version of that pioneered by Langer and Ambegaokar for
conventional superconductors.Comment: 4 pages, including 1 figure (REVTEX); references added, minor
corrections mad
Universality and its Origins at the Amorphous Solidification Transition
Systems undergoing an equilibrium phase transition from a liquid state to an
amorphous solid state exhibit certain universal characteristics. Chief among
these are the fraction of particles that are randomly localized and the scaling
functions that describe the order parameter and (equivalently) the statistical
distribution of localization lengths for these localized particles. The purpose
of this Paper is to discuss the origins and consequences of this universality,
and in doing so, three themes are explored. First, a replica-Landau-type
approach is formulated for the universality class of systems that are composed
of extended objects connected by permanent random constraints and undergo
amorphous solidification at a critical density of constraints. This formulation
generalizes the cases of randomly cross-linked and end-linked macromolecular
systems, discussed previously. The universal replica free energy is
constructed, in terms of the replica order parameter appropriate to amorphous
solidification, the value of the order parameter is obtained in the liquid and
amorphous solid states, and the chief universal characteristics are determined.
Second, the theory is reformulated in terms of the distribution of local static
density fluctuations rather than the replica order parameter. It is shown that
a suitable free energy can be constructed, depending on the distribution of
static density fluctuations, and that this formulation yields precisely the
same conclusions as the replica approach. Third, the universal predictions of
the theory are compared with the results of extensive numerical simulations of
randomly cross-linked macromolecular systems, due to Barsky and Plischke, and
excellent agreement is found.Comment: 10 pages, including 3 figures (REVTEX
- …
