31,694 research outputs found
The non-metallic materials sample array
The Non-Metallic Materials Sample Array (MSA) was flown as verification flight instrumentation (VFI) on both Spacelab 1 (SL-1) and Spacelab 2 (SL-2). The basis for materials selection was either previous flight history or probable flight suitability based upon analysis. The observed changes in the optical properties of the exposed materials are, in general, quite minimal; however, this data represents the short exposure of two Space Shuttle missions, and no attempt should be made to extrapolate the long-term exposure. The MSA was in orbit for 10 days at approximately 240 km on SL-1 and for 7 days at approximately 315 km on SL-2. The array was exposed to the solar flux for only a portion of the time in orbit
Weak Gravitational Flexion
Flexion is the significant third-order weak gravitational lensing effect
responsible for the weakly skewed and arc-like appearance of lensed galaxies.
Here we demonstrate how flexion measurements can be used to measure galaxy halo
density profiles and large-scale structure on non-linear scales, via
galaxy-galaxy lensing, dark matter mapping and cosmic flexion correlation
functions. We describe the origin of gravitational flexion, and discuss its
four components, two of which are first described here. We also introduce an
efficient complex formalism for all orders of lensing distortion. We proceed to
examine the flexion predictions for galaxy-galaxy lensing, examining isothermal
sphere and Navarro, Frenk & White (NFW) profiles and both circularly symmetric
and elliptical cases. We show that in combination with shear we can precisely
measure galaxy masses and NFW halo concentrations. We also show how flexion
measurements can be used to reconstruct mass maps in 2-D projection on the sky,
and in 3-D in combination with redshift data. Finally, we examine the
predictions for cosmic flexion, including convergence-flexion
cross-correlations, and find that the signal is an effective probe of structure
on non-linear scales.Comment: 17 pages, including 12 figures, submitted to MNRA
Properties of Nucleon Resonances by means of a Genetic Algorithm
We present an optimization scheme that employs a Genetic Algorithm (GA) to
determine the properties of low-lying nucleon excitations within a realistic
photo-pion production model based upon an effective Lagrangian. We show that
with this modern optimization technique it is possible to reliably assess the
parameters of the resonances and the associated error bars as well as to
identify weaknesses in the models. To illustrate the problems the optimization
process may encounter, we provide results obtained for the nucleon resonances
(1230) and (1700). The former can be easily isolated and thus
has been studied in depth, while the latter is not as well known
experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction
Plasma levels of human granulocytic elastase-alpha1-proteinase inhibitor complex (E-alpha1PI) in patients with septicemia and acute leukemia
Differential medial temporal lobe morphometric predictors of item- and relational-encoded memories in healthy individuals and in individuals with mild cognitive impairment and Alzheimer's disease.
INTRODUCTION:Episodic memory processes are supported by different subregions of the medial temporal lobe (MTL). In contrast to a unitary model of memory recognition supported solely by the hippocampus, a current model suggests that item encoding engages perirhinal cortex, whereas relational encoding engages parahippocampal cortex and the hippocampus. However, this model has not been examined in the context of aging, neurodegeneration, and MTL morphometrics. METHODS:Forty-four healthy subjects (HSs) and 18 cognitively impaired subjects (nine mild cognitive impairment [MCI] and nine Alzheimer's disease [AD] patients) were assessed with the relational and item-specific encoding task (RISE) and underwent 3T magnetic resonance imaging. The RISE assessed the differential contribution of relational and item-specific memory. FreeSurfer was used to obtain measures of cortical thickness of MTL regions and hippocampus volume. RESULTS:Memory accuracies for both item and relational memory were significantly better in the HS group than in the MCI/AD group. In MCI/AD group, relational memory was disproportionately impaired. In HSs, hierarchical regressions demonstrated that memory was predicted by perirhinal thickness after item encoding, and by hippocampus volume after relational encoding (both at trend level) and significantly by parahippocampal thickness at associative recognition. The same brain morphometry profiles predicted memory accuracy in MCI/AD, although more robustly perirhinal thickness for item encoding (R2 = 0.31) and hippocampal volume and parahippocampal thickness for relational encoding (R2 = 0.31). DISCUSSION:Our results supported a model of episodic memory in which item-specific encoding was associated with greater perirhinal cortical thickness, while relational encoding was associated with parahippocampal thickness and hippocampus volume. We identified these relationships not only in HSs but also in individuals with MCI and AD. In the subjects with cognitive impairment, reductions in hippocampal volume and impairments in relational memory were especially prominent
Spatial Mixing of Coloring Random Graphs
We study the strong spatial mixing (decay of correlation) property of proper
-colorings of random graph with a fixed . The strong spatial
mixing of coloring and related models have been extensively studied on graphs
with bounded maximum degree. However, for typical classes of graphs with
bounded average degree, such as , an easy counterexample shows that
colorings do not exhibit strong spatial mixing with high probability.
Nevertheless, we show that for with and
sufficiently large , with high probability proper -colorings of
random graph exhibit strong spatial mixing with respect to an
arbitrarily fixed vertex. This is the first strong spatial mixing result for
colorings of graphs with unbounded maximum degree. Our analysis of strong
spatial mixing establishes a block-wise correlation decay instead of the
standard point-wise decay, which may be of interest by itself, especially for
graphs with unbounded degree
- …
