170 research outputs found
Lorentz Violation in Warped Extra Dimensions
Higher dimensional theories which address some of the problematic issues of
the Standard Model(SM) naturally involve some form of -dimensional
Lorentz invariance violation (LIV). In such models the fundamental physics
which leads to, e.g., field localization, orbifolding, the existence of brane
terms and the compactification process all can introduce LIV in the higher
dimensional theory while still preserving 4-d Lorentz invariance. In this
paper, attempting to capture some of this physics, we extend our previous
analysis of LIV in 5-d UED-type models to those with 5-d warped extra
dimensions. To be specific, we employ the 5-d analog of the SM Extension of
Kostelecky et. al. ~which incorporates a complete set of operators arising from
spontaneous LIV. We show that while the response of the bulk scalar, fermion
and gauge fields to the addition of LIV operators in warped models is
qualitatively similar to what happens in the flat 5-d UED case, the gravity
sector of these models reacts very differently than in flat space.
Specifically, we show that LIV in this warped case leads to a non-zero bulk
mass for the 5-d graviton and so the would-be zero mode, which we identify as
the usual 4-d graviton, must necessarily become massive. The origin of this
mass term is the simultaneous existence of the constant non-zero
curvature and the loss of general co-ordinate invariance via LIV in the 5-d
theory. Thus warped 5-d models with LIV in the gravity sector are not
phenomenologically viable.Comment: 14 pages, 4 figs; discussion added, algebra repaire
Neutrino Mass and from a Mini-Seesaw
The recently proposed "mini-seesaw mechanism" combines naturally suppressed
Dirac and Majorana masses to achieve light Standard Model neutrinos via a
low-scale seesaw. A key feature of this approach is the presence of multiple
light (order GeV) sterile-neutrinos that mix with the Standard Model. In this
work we study the bounds on these light sterile-neutrinos from processes like
\mu ---> e + \gamma, invisible Z-decays, and neutrinoless double beta-decay. We
show that viable parameter space exists and that, interestingly, key
observables can lie just below current experimental sensitivities. In
particular, a motivated region of parameter space predicts a value of BR(\mu
---> e + \gamma) within the range to be probed by MEG.Comment: 1+26 pages, 7 figures. v2 JHEP version (typo's fixed, minor change to
presentation, results unchanged
New physics searches at near detectors of neutrino oscillation experiments
We systematically investigate the prospects of testing new physics with tau
sensitive near detectors at neutrino oscillation facilities. For neutrino beams
from pion decay, from the decay of radiative ions, as well as from the decays
of muons in a storage ring at a neutrino factory, we discuss which effective
operators can lead to new physics effects. Furthermore, we discuss the present
bounds on such operators set by other experimental data currently available.
For operators with two leptons and two quarks we present the first complete
analysis including all relevant operators simultaneously and performing a
Markov Chain Monte Carlo fit to the data. We find that these effects can induce
tau neutrino appearance probabilities as large as O(10^{-4}), which are within
reach of forthcoming experiments. We highlight to which kind of new physics a
tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX
Composite Higgs Search at the LHC
The Higgs boson production cross-sections and decay rates depend, within the
Standard Model (SM), on a single unknown parameter, the Higgs mass. In
composite Higgs models where the Higgs boson emerges as a pseudo-Goldstone
boson from a strongly-interacting sector, additional parameters control the
Higgs properties which then deviate from the SM ones. These deviations modify
the LEP and Tevatron exclusion bounds and significantly affect the searches for
the Higgs boson at the LHC. In some cases, all the Higgs couplings are reduced,
which results in deterioration of the Higgs searches but the deviations of the
Higgs couplings can also allow for an enhancement of the gluon-fusion
production channel, leading to higher statistical significances. The search in
the H to gamma gamma channel can also be substantially improved due to an
enhancement of the branching fraction for the decay of the Higgs boson into a
pair of photons.Comment: 32 pages, 16 figure
QCD and strongly coupled gauge theories : challenges and perspectives
We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
A continuous mapping of sleep states through association of EEG with a mesoscale cortical model
Here we show that a mathematical model of the human sleep cycle can be used to obtain a detailed description of electroencephalogram (EEG) sleep stages, and we discuss how this analysis may aid in the prediction and prevention of seizures during sleep. The association between EEG data and the cortical model is found via locally linear embedding (LLE), a method of dimensionality reduction. We first show that LLE can distinguish between traditional sleep stages when applied to EEG data. It reliably separates REM and non-REM sleep and maps the EEG data to a low-dimensional output space where the sleep state changes smoothly over time. We also incorporate the concept of strongly connected components and use this as a method of automatic outlier rejection for EEG data. Then, by using LLE on a hybrid data set containing both sleep EEG and signals generated from the mesoscale cortical model, we quantify the relationship between the data and the mathematical model. This enables us to take any sample of sleep EEG data and associate it with a position among the continuous range of sleep states provided by the model; we can thus infer a trajectory of states as the subject sleeps. Lastly, we show that this method gives consistent results for various subjects over a full night of sleep and can be done in real time
Proportionate vs disproportionate distribution of wealth of two individuals in a tempered Paretian ensemble
We study the distribution P(\omega) of the random variable \omega = x_1/(x_1
+ x_2), where x_1 and x_2 are the wealths of two individuals selected at random
from the same tempered Paretian ensemble characterized by the distribution
\Psi(x) \sim \phi(x)/x^{1 + \alpha}, where \alpha > 0 is the Pareto index and
is the cut-off function. We consider two forms of \phi(x): a bounded
function \phi(x) = 1 for L \leq x \leq H, and zero otherwise, and a smooth
exponential function \phi(x) = \exp(-L/x - x/H). In both cases \Psi(x) has
moments of arbitrary order.
We show that, for \alpha > 1, P(\omega) always has a unimodal form and is
peaked at \omega = 1/2, so that most probably x_1 \approx x_2. For 0 < \alpha <
1 we observe a more complicated behavior which depends on the value of \delta =
L/H. In particular, for \delta < \delta_c - a certain threshold value -
P(\omega) has a three-modal (for a bounded \phi(x)) and a bimodal M-shape (for
an exponential \phi(x)) form which signifies that in such ensembles the wealths
x_1 and x_2 are disproportionately different.Comment: 9 pages, 8 figures, to appear in Physica
Complex systems and the technology of variability analysis
Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients
Virtual Reality as a Tool for Evaluation of Repetitive Rhythmic Movements in the Elderly and Parkinson's Disease Patients
This work presents an immersive Virtual Reality (VR) system to evaluate, and potentially treat, the alterations in rhythmic hand movements seen in Parkinson's disease (PD) and the elderly (EC), by comparison with healthy young controls (YC). The system integrates the subjects into a VR environment by means of a Head Mounted Display, such that subjects perceive themselves in a virtual world consisting of a table within a room. In this experiment, subjects are presented in 1st person perspective, so that the avatar reproduces finger tapping movements performed by the subjects. The task, known as the finger tapping test (FT), was performed by all three subject groups, PD, EC and YC. FT was carried out by each subject on two different days (sessions), one week apart. In each FT session all subjects performed FT in the real world (FTREAL) and in the VR (FTVR); each mode was repeated three times in randomized order. During FT both the tapping frequency and the coefficient of variation of inter-tap interval were registered. FTVR was a valid test to detect differences in rhythm formation between the three groups. Intra-class correlation coefficients (ICC) and mean difference between days for FTVR (for each group) showed reliable results. Finally, the analysis of ICC and mean difference between FTVR vs FTREAL, for each variable and group, also showed high reliability. This shows that FT evaluation in VR environments is valid as real world alternative, as VR evaluation did not distort movement execution and detects alteration in rhythm formation. These results support the use of VR as a promising tool to study alterations and the control of movement in different subject groups in unusual environments, such as during fMRI or other imaging studies
Total Hadronic Cross Section Data and the Froissart-Martin Bound
The energy dependence of the total hadronic cross section at high energies is
investigated with focus on the recent experimental result by the TOTEM
Collaboration at 7 TeV and the Froissart-Martin bound. On the basis of a class
of analytical parametrization with the exponent in the leading
logarithm contribution as a free parameter, different variants of fits to
and total cross section data above 5 GeV are developed. Two
ensembles are considered, the first comprising data up to 1.8 TeV, the second
also including the data collected at 7 TeV. We shown that in all fit variants
applied to the first ensemble the exponent is statistically consistent with
= 2. Applied to the second ensemble, however, the same variants yield
's above 2, a result already obtained in two other analysis, by U.
Amaldi \textit{et al}. and by the UA4/2 Collaboration. As recently discussed by
Ya. I. Azimov, this faster-than-squared-logarithm rise does not necessarily
violate unitarity. Our results suggest that the energy dependence of the
hadronic total cross section at high energies still constitute an open problem.Comment: 20 pages, 10 figures, introduction extended and general references
added to match editorial style, to appear in the Brazilian Journal of Physic
- …
