67 research outputs found
How large should whales be?
The evolution and distribution of species body sizes for terrestrial mammals
is well-explained by a macroevolutionary tradeoff between short-term selective
advantages and long-term extinction risks from increased species body size,
unfolding above the 2g minimum size induced by thermoregulation in air. Here,
we consider whether this same tradeoff, formalized as a constrained
convection-reaction-diffusion system, can also explain the sizes of fully
aquatic mammals, which have not previously been considered. By replacing the
terrestrial minimum with a pelagic one, at roughly 7000g, the terrestrial
mammal tradeoff model accurately predicts, with no tunable parameters, the
observed body masses of all extant cetacean species, including the 175,000,000g
Blue Whale. This strong agreement between theory and data suggests that a
universal macroevolutionary tradeoff governs body size evolution for all
mammals, regardless of their habitat. The dramatic sizes of cetaceans can thus
be attributed mainly to the increased convective heat loss is water, which
shifts the species size distribution upward and pushes its right tail into
ranges inaccessible to terrestrial mammals. Under this macroevolutionary
tradeoff, the largest expected species occurs where the rate at which
smaller-bodied species move up into large-bodied niches approximately equals
the rate at which extinction removes them.Comment: 7 pages, 3 figures, 2 data table
Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a southern hemisphere coastal feeding ground
Site fidelity is common among migratory cetaceans, including humpback whales (Megaptera novaeangliae). In the Northern Hemisphere it has been found that fidelity to humpback whale feeding grounds is transferred maternally but this has never been shown for the species in the Southern Hemisphere. We examined this in a unique feeding area off west South Africa using resighting data of 68 individually identified humpback whales by means of photographic (tail flukes and dorsal fins) and/or molecular methods (microsatellite genotyping) over an 18 year span. We found short-term association patterns and recurrent visits typical of other feeding grounds. Males and females had different seasonality of attendance. Significant female-dominated presence corresponded to timing of an expected influx of females on their southward migration from the breeding ground: firstly non-nursing (possibly pregnant) females in mid-spring, and mothers and calves in mid-to late summer. The potential benefit of this mid-latitude feeding area for females is illustrated by a record of a cow with known age of at least 23 years that produced calves in three consecutive years, each of which survived to at least six months of age: the first record of successful post-partum ovulation for this species in the Southern Hemisphere. We recorded association of a weaned calf with its mother, and a recurring association between a non-lactating female and male over more than two years. Moreover, three animals first identified as calves returned to the same area in subsequent years, sometimes on the same day as their mothers. This, together with numerous Parent-Offspring relations detected genetically among and between resighted and non-resighted whales is strongly suggestive of maternally derived site fidelity at a small spatial scale by a small sub-population of humpback whales.National Research Foundation (NRF), South Africa [2047517]; PADI Project AWARE (UK) [095]; Earthwatch Institute (project title "Whales of South Africa"
Simultaneous tracking of blue whales and large ships demonstrates limited behavioral responses for avoiding collision
Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: evidence from a concurrent whale and krill survey
A dedicated aerial cetacean survey was con- ducted concurrently to a standardised net trawl survey for
krill in order to investigate distribution patterns of large whales and different krill species and to investigate relationships of these. Distance sampling data were used to produce density surface models for humpback (Megaptera novaeangliae) and fin whales (Balaenoptera physalus) around the West Antarctic Peninsula (WAP). Abundance for both species was estimated over two strata in the Bransfield Strait and Drake Passage. Distinct distribution patterns suggest horizontal niche partitioning of the two whale species around the WAP, with fin whales aggregating at the shelf edge of the South Shetland Islands in the Drake Passage and humpback whales in the Bransfield Strait. Krill biomass estimated from the concurrent krill survey was used along with CTD data from the same expedition, bathymetric parameters and satellite data on chlorophyll-a and ice concentration to model krill distribution. Comparisons of the predicted distributions of both whale species with the predicted distributions of Euphausia superba, Euphausia crystallorophias and Thysanoessa macrura
suggest a complex relationship rather than a straightforward correlation between krill and whales.
However, results indicate that fin whales were feeding in an area dominated by T. macrura , while humpback whales were found in areas of higher E. superba biomass. Our results provide abundance estimates for humpback whales and, for the first time, fin whales in the WAP and contribute important information on feeding ecology and habitat use of these two species in the Southern Ocean
Evidence of sociality and group foraging in Antarctic minke whales (Balaenoptera bonaerensis)
Top krill predators such as the Antarctic minke whale (AMW) serve a vital role within the fragile Antarctic sea-ice ecosystem. They are an abundant krill specialist, but their ecological role in the Antarctic remains poorly understood due to their cryptic behavior and remote habitat. It is therefore crucial to develop a baseline understanding of their basic social and foraging ecology. This study uses animal-borne camera tags to quantitatively explore these critical ecological aspects. Twenty-eight tags were deployed on AMW between 2018 and 2019 in Andvord and Paradise Bays around the Western Antarctic Peninsula. Tag data were analyzed with respect to diving, foraging, and social behavior. Results suggest the presence of loose fission-fusion sociality, with individuals forming short-term associations in 60.6% of cases including both foraging and non-foraging contexts. Socializing was significantly more common for larger individuals and resulted in a significant decrease in foraging rates for both shallow ( 30 m) dives. There were 12 instances of simultaneously tagged individuals that associated with one another in pairs or trios, displaying synchronized spatial movement and diving behavior. These data illustrated the use of group foraging strategies, with high incidence of synchronized foraging dives (67.5% of associated dives) and lunges (64% of associated lunges). Our results provide clear baseline information on AMW sociality and group foraging, which will help direct future studies for more targeted work. This study will improve our ability to understand the relationship between Antarctic species and their environment as climate change continues to alter the ecosystem landscape.Full Tex
Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from drones
Increasingly, drone-based photogrammetry has been used to measure size and body condition changes in marine megafauna. A broad range of platforms, sensors, and altimeters are being applied for these purposes, but there is no unified way to predict photogrammetric uncertainty across this methodological spectrum. As such, it is difficult to make robust comparisons across studies, disrupting collaborations amongst researchers using platforms with varying levels of measurement accuracy. Here we built off previous studies quantifying uncertainty and used an experimental approach to train a Bayesian statistical model using a known-sized object floating at the water’s surface to quantify how measurement error scales with altitude for several different drones equipped with different cameras, focal length lenses, and altimeters. We then applied the fitted model to predict the length distributions and estimate age classes of unknown-sized humpback whales Megaptera novaeangliae, as well as to predict the population-level morphological relationship between rostrum to blowhole distance and total body length of Antarctic minke whales Balaenoptera bonaerensis. This statistical framework jointly estimates errors from altitude and length measurements from multiple observations and accounts for altitudes measured with both barometers and laser altimeters while incorporating errors specific to each. This Bayesian model outputs a posterior predictive distribution of measurement uncertainty around length measurements and allows for the construction of highest posterior density intervals to define measurement uncertainty, which allows one to make probabilistic statements and stronger inferences pertaining to morphometric features critical for understanding life history patterns and potential impacts from anthropogenically altered habitats.</jats:p
Convergent evolution driven by similar feeding mechanics in balaenopterid whales and pelicans.
The feeding apparatuses of rorqual whales and pelicans exhibit a number of similarities, including long, kinetic jaws that increase gape size, and extensible tissue comprising the floor of the mouth. These specializations enable the engulfment of large volumes of prey-laden water in both taxa. However, the mechanics of engulfment feeding in rorquals and pelicans have never been quantitatively compared. Here, we use "BendCT," a novel analytical program, to investigate the mechanical design of rorqual and pelican mandibles, to understand whether these bones show comparable designs for resisting similar hydrodynamical loads. We also compare the mechanical properties of the extensible tissue used during engulfment in rorquals and pelicans. We demonstrate that the evolutionary convergence in the feeding apparatus of rorquals and pelicans is more pronounced than has been recognized previously; both taxa exhibit mandibular flexural rigidity distributions suited for resisting dorsoventral bending stresses encountered while feeding, and possess similarly extensible tissue on the floor of their mouths
- …
