3,174 research outputs found
Coding for Parallel Channels: Gallager Bounds for Binary Linear Codes with Applications to Repeat-Accumulate Codes and Variations
This paper is focused on the performance analysis of binary linear block
codes (or ensembles) whose transmission takes place over independent and
memoryless parallel channels. New upper bounds on the maximum-likelihood (ML)
decoding error probability are derived. These bounds are applied to various
ensembles of turbo-like codes, focusing especially on repeat-accumulate codes
and their recent variations which possess low encoding and decoding complexity
and exhibit remarkable performance under iterative decoding. The framework of
the second version of the Duman and Salehi (DS2) bounds is generalized to the
case of parallel channels, along with the derivation of their optimized tilting
measures. The connection between the generalized DS2 and the 1961 Gallager
bounds, addressed by Divsalar and by Sason and Shamai for a single channel, is
explored in the case of an arbitrary number of independent parallel channels.
The generalization of the DS2 bound for parallel channels enables to re-derive
specific bounds which were originally derived by Liu et al. as special cases of
the Gallager bound. In the asymptotic case where we let the block length tend
to infinity, the new bounds are used to obtain improved inner bounds on the
attainable channel regions under ML decoding. The tightness of the new bounds
for independent parallel channels is exemplified for structured ensembles of
turbo-like codes. The improved bounds with their optimized tilting measures
show, irrespectively of the block length of the codes, an improvement over the
union bound and other previously reported bounds for independent parallel
channels; this improvement is especially pronounced for moderate to large block
lengths.Comment: Submitted to IEEE Trans. on Information Theory, June 2006 (57 pages,
9 figures
On the Microscopic Foundations of Elasticity
The modeling of the elastic properties of disordered or nanoscale solids
requires the foundations of the theory of elasticity to be revisited, as one
explores scales at which this theory may no longer hold. The only cases for
which microscopically based derivations of elasticity are documented are
(nearly) uniformly strained lattices. A microscopic approach to elasticity is
proposed. As a first step, microscopically exact expressions for the
displacement, strain and stress fields are derived. Conditions under which
linear elastic constitutive relations hold are studied theoretically and
numerically. It turns out that standard continuum elasticity is not
self-evident, and applies only above certain spatial scales, which depend on
details of the considered system and boundary conditions. Possible relevance to
granular materials is briefly discussed.Comment: 6 pages, 5 figures, LaTeX2e with svjour.cls and svepj.clo, submitted
to EPJ E, minor error corrected in v
Particle displacements in the elastic deformation of amorphous materials: local fluctuations vs. non-affine field
We study the local disorder in the deformation of amorphous materials by
decomposing the particle displacements into a continuous, inhomogeneous field
and the corresponding fluctuations. We compare these fields to the commonly
used non-affine displacements in an elastically deformed 2D Lennard-Jones
glass. Unlike the non-affine field, the fluctuations are very localized, and
exhibit a much smaller (and system size independent) correlation length, on the
order of a particle diameter, supporting the applicability of the notion of
local "defects" to such materials. We propose a scalar "noise" field to
characterize the fluctuations, as an additional field for extended continuum
models, e.g., to describe the localized irreversible events observed during
plastic deformation.Comment: Minor corrections to match the published versio
Force Chains, Microelasticity and Macroelasticity
It has been claimed that quasistatic granular materials, as well as nanoscale
materials, exhibit departures from elasticity even at small loadings. It is
demonstrated, using 2D and 3D models with interparticle harmonic interactions,
that such departures are expected at small scales [below O(100) particle
diameters], at which continuum elasticity is invalid, and vanish at large
scales. The models exhibit force chains on small scales, and force and stress
distributions which agree with experimental findings. Effects of anisotropy,
disorder and boundary conditions are discussed as well.Comment: 4 pages, 11 figures, RevTeX 4, revised and resubmitted to Phys. Rev.
Let
Scale separation in granular packings: stress plateaus and fluctuations
It is demonstrated, by numerical simulations of a 2D assembly of polydisperse
disks, that there exists a range (plateau) of coarse graining scales for which
the stress tensor field in a granular solid is nearly resolution independent,
thereby enabling an `objective' definition of this field. Expectedly, it is not
the mere size of the the system but the (related) magnitudes of the gradients
that determine the widths of the plateaus. Ensemble averaging (even over
`small' ensembles) extends the widths of the plateaus to sub-particle scales.
The fluctuations within the ensemble are studied as well. Both the response to
homogeneous forcing and to an external compressive localized load (and gravity)
are studied. Implications to small solid systems and constitutive relations are
briefly discussed.Comment: 4 pages, 4 figures, RevTeX 4, Minor corrections to match the
published versio
Stress response inside perturbed particle assemblies
The effect of structural disorder on the stress response inside three
dimensional particle assemblies is studied using computer simulations of
frictionless sphere packings. Upon applying a localised, perturbative force
within the packings, the resulting {\it Green's} function response is mapped
inside the different assemblies, thus providing an explicit view as to how the
imposed perturbation is transmitted through the packing. In weakly disordered
arrays, the resulting transmission of forces is of the double-peak variety, but
with peak widths scaling linearly with distance from the source of the
perturbation. This behaviour is consistent with an anisotropic elasticity
response profile. Increasing the disorder distorts the response function until
a single-peak response is obtained for fully disordered packings consistent
with an isotropic description.Comment: 8 pages, 7 figure captions To appear in Granular Matte
The anisotropy of granular materials
The effect of the anisotropy on the elastoplastic response of two dimensional
packed samples of polygons is investigated here, using molecular dynamics
simulation. We show a correlation between fabric coefficients, characterizing
the anisotropy of the granular skeleton, and the anisotropy of the elastic
response. We also study the anisotropy induced by shearing on the subnetwork of
the sliding contacts. This anisotropy provides an explanation to some features
of the plastic deformation of granular media.Comment: Submitted to PR
Reflection of photons and azimuthal distribution of photoelectrons in a cylindrical beam pipe
In a cryogenic proton accelerator, such as the LHC, the creation of an electron cloud and generated heat loads resulting from electron bombardment are strongly dependent on the azimuthal distribution of created photoelectrons. In this context, photon reflection and photoelectron yield measurements have been performed using a beam line on the VEPP-2M storage ring. Six electrodes, covering the complete vacuum chamber perimeter, were mounted such that they could be suitably biased, and while one electrode was irradiated with synchrotron radiation the resulting electron current of all others could be measured. A detailed description of the experimental apparatus and the results of the measurements of photon reflection and the azimuthal distribution of generated photoelectrons are presented
- …
