115 research outputs found
First insights into structure-function relationships of alkylglycerol monooxygenase
Alkylglycerol monooxygenase is a tetrahydrobiopterin-dependent enzyme that cleaves the O-alkyl-bond of alkylglycerols. It is an exceptionally unstable, hydrophobic membrane protein which has never been purified in active form. Recently, we were able to identify the sequence of alkylglycerol monooxygenase. TMEM195, the gene coding for alkylglycerol monooxygenase, belongs to the fatty acid hydroxylases, a family of integral membrane enzymes which have an 8-histidine motif crucial for catalysis. Mutation of each of these residues resulted in a complete loss of activity. We now extended the mutational analysis to another 25 residues and identified three further residues conserved throughout all members of the fatty acid hydroxylases which are essential for alkylglycerol monooxygenase activity. Furthermore, mutation of a specific glutamate resulted in an 18-fold decreased affinity of the protein to tetrahydrobiopterin, strongly indicating a potential important role in cofactor interaction. A glutamate residue in a comparable amino acid surrounding had already been shown to be responsible for tetrahydrobiopterin binding in the aromatic amino acid hydroxylases. Ab initio modelling of the enzyme yielded a structural model for the central part of alkylglycerol monooxygenase where all essential residues identified by mutational analysis are in close spatial vicinity, thereby defining the potential catalytic site of this enzym
Insights from a Murine Aortic Transplantation Model
Transplant vasculopathy (TV) represents a major obstacle to long-term graft
survival and correlates with severity of ischemia reperfusion injury (IRI).
Donor administration of the nitric oxide synthases (NOS) co-factor
tetrahydrobiopterin has been shown to prevent IRI. Herein, we analysed whether
tetrahydrobiopterin is also involved in TV development. Using a fully
allogeneic mismatched (BALB/c to C57BL/6) murine aortic transplantation model
grafts subjected to long cold ischemia time developed severe TV with intimal
hyperplasia (α-smooth muscle actin positive cells in the neointima) and
endothelial activation (increased P-selectin expression). Donor pretreatment
with tetrahydrobiopterin significantly minimised these changes resulting in
only marginal TV development. Severe TV observed in the non-treated group was
associated with increased protein oxidation and increased occurrence of
endothelial NOS monomers in the aortic grafts already during graft
procurement. Tetrahydrobiopterin supplementation of the donor prevented all
these early oxidative changes in the graft. Non-treated allogeneic grafts
without cold ischemia time and syngeneic grafts did not develop any TV. We
identified early protein oxidation and impaired endothelial NOS homodimer
formation as plausible mechanistic explanation for the crucial role of IRI in
triggering TV in transplanted aortic grafts. Therefore, targeting endothelial
NOS in the donor represents a promising strategy to minimise TV
Recommended from our members
The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental
model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is
unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the
genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with
simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases.
Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into
earlyeukaryoteevolution.Wedescribeextensiveuseofhistidinekinase-basedtwo-componentsystemsandtyrosinekinasesignaling,
the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide
repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes.
Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of
Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases inAcanthamoeba and Physarum
as representatives of two distantly related subdivisions ofAmoebozoa argues against the later emergence of tyrosine kinase signaling
in the opisthokont lineage and also against the acquisition by horizontal gene transfe
A first glimpse at the transcriptome of Physarum polycephalum
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Physarum nitric oxide synthases: genomic structures and enzymology of recombinant proteins
Physarum polycephalum expresses two closely related, calcium-independent NOSs (nitric oxide synthases). In our previous work, we showed that both NOSs are induced during starvation and apparently play a functional role in sporulation. In the present study, we characterized the genomic structures of both Physarum NOSs, expressed both enzymes recombinantly in bacteria and characterized their biochemical properties. Whereas the overall genomic organization of Physarum NOS genes is comparable with various animal NOSs, none of the exon–intron boundaries are conserved. Recombinant expression of clones with various N-termini identified N-terminal amino acids essential for enzyme activity, but not required for haem binding or dimerization, and suggests the usage of non-AUG start codons for Physarum NOSs. Biochemical characterization of the two Physarum isoenzymes revealed different affinities for L-arginine, FMN and 6R-5,6,7,8-tetrahydro-L-biopterin
Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase
Alkylglycerol mono-oxygenase (EC 1.14.16.5) forms a third, distinct, class among tetrahydrobiopterin-dependent enzymes in addition to aromatic amino acid hydroxylases and nitric oxide synthases. Its protein sequence contains the fatty acid hydroxylase motif, a signature indicative of a di-iron centre, which contains eight conserved histidine residues. Membrane enzymes containing this motif, including alkylglycerol mono-oxygenase, are especially labile and so far have not been purified to homogeneity in active form. To obtain a first insight into structure–function relationships of this enzyme, we performed site-directed mutagenesis of 26 selected amino acid residues and expressed wild-type and mutant proteins containing a C-terminal Myc tag together with fatty aldehyde dehydrogenase in Chinese-hamster ovary cells. Among all of the acidic residues within the eight-histidine motif, only mutation of Glu137 to alanine led to an 18-fold increase in the Michaelis–Menten constant for tetrahydrobiopterin, suggesting a role in tetrahydrobiopterin interaction. A ninth additional histidine residue essential for activity was also identified. Nine membrane domains were predicted by four programs: ESKW, TMHMM, MEMSAT and Phobius. Prediction of a part of the structure using the Rosetta membrane ab initio method led to a plausible suggestion for a structure of the catalytic site of alkylglycerol mono-oxygenase
The Protein Partners of GTP Cyclohydrolase I in Rat Organs
GTP cyclohydrolase I (GCH1) is the rate-limiting enzyme for tetrahydrobiopterin biosynthesis and has been shown to be a promising therapeutic target in ischemic heart disease, hypertension, atherosclerosis and diabetes. The endogenous GCH1-interacting partners have not been identified. Here, we determined endogenous GCH1-interacting proteins in rat.A pulldown and proteomics approach were used to identify GCH1 interacting proteins in rat liver, brain, heart and kidney. We demonstrated that GCH1 interacts with at least 17 proteins including GTP cyclohydrolase I feedback regulatory protein (GFRP) in rat liver by affinity purification followed by proteomics and validated six protein partners in liver, brain, heart and kidney by immunoblotting. GCH1 interacts with GFRP and very long-chain specific acyl-CoA dehydrogenase in the liver, tubulin beta-2A chain in the liver and brain, DnaJ homolog subfamily A member 1 and fatty aldehyde dehydrogenase in the liver, heart and kidney and eukaryotic translation initiation factor 3 subunit I (EIF3I) in all organs tested. Furthermore, GCH1 associates with mitochondrial proteins and GCH1 itself locates in mitochondria.GCH1 interacts with proteins in an organ dependant manner and EIF3I might be a general regulator of GCH1. Our finding indicates GCH1 might have broader functions beyond tetrahydrobiopterin biosynthesis
Chemical PARP Inhibition Enhances Growth of Arabidopsis and Reduces Anthocyanin Accumulation and the Activation of Stress Protective Mechanisms
Poly-ADP-ribose polymerase (PARP) post-translationally modifies proteins through the addition of ADP-ribose polymers, yet its role in modulating plant development and stress responses is only poorly understood. The experiments presented here address some of the gaps in our understanding of its role in stress tolerance and thereby provide new insights into tolerance mechanisms and growth. Using a combination of chemical and genetic approaches, this study characterized phenotypes associated with PARP inhibition at the physiological level. Molecular analyses including gene expression analysis, measurement of primary metabolites and redox metabolites were used to understand the underlying processes. The analysis revealed that PARP inhibition represses anthocyanin and ascorbate accumulation under stress conditions. The reduction in defense is correlated with enhanced biomass production. Even in unstressed conditions protective genes and molecules are repressed by PARP inhibition. The reduced anthocyanin production was shown to be based on the repression of transcription of key regulatory and biosynthesis genes. PARP is a key factor for understanding growth and stress responses of plants. PARP inhibition allows plants to reduce protection such as anthocyanin, ascorbate or Non-Photochemical-Quenching whilst maintaining high energy levels likely enabling the observed enhancement of biomass production under stress, opening interesting perspectives for increasing crop productivity
- …
