7,383 research outputs found

    Critical random graphs: limiting constructions and distributional properties

    Get PDF
    We consider the Erdos-Renyi random graph G(n,p) inside the critical window, where p = 1/n + lambda * n^{-4/3} for some lambda in R. We proved in a previous paper (arXiv:0903.4730) that considering the connected components of G(n,p) as a sequence of metric spaces with the graph distance rescaled by n^{-1/3} and letting n go to infinity yields a non-trivial sequence of limit metric spaces C = (C_1, C_2, ...). These limit metric spaces can be constructed from certain random real trees with vertex-identifications. For a single such metric space, we give here two equivalent constructions, both of which are in terms of more standard probabilistic objects. The first is a global construction using Dirichlet random variables and Aldous' Brownian continuum random tree. The second is a recursive construction from an inhomogeneous Poisson point process on R_+. These constructions allow us to characterize the distributions of the masses and lengths in the constituent parts of a limit component when it is decomposed according to its cycle structure. In particular, this strengthens results of Luczak, Pittel and Wierman by providing precise distributional convergence for the lengths of paths between kernel vertices and the length of a shortest cycle, within any fixed limit component.Comment: 30 pages, 4 figure

    Critical random graphs : limiting constructions and distributional properties

    Get PDF
    We consider the Erdos-Renyi random graph G(n, p) inside the critical window, where p = 1/n + lambda n(-4/3) for some lambda is an element of R. We proved in Addario-Berry et al. [2009+] that considering the connected components of G(n, p) as a sequence of metric spaces with the graph distance rescaled by n(-1/3) and letting n -> infinity yields a non-trivial sequence of limit metric spaces C = (C-1, C-2,...). These limit metric spaces can be constructed from certain random real trees with vertex-identifications. For a single such metric space, we give here two equivalent constructions, both of which are in terms of more standard probabilistic objects. The first is a global construction using Dirichlet random variables and Aldous' Brownian continuum random tree. The second is a recursive construction from an inhomogeneous Poisson point process on R+. These constructions allow us to characterize the distributions of the masses and lengths in the constituent parts of a limit component when it is decomposed according to its cycle structure. In particular, this strengthens results of Luczak et al. [1994] by providing precise distributional convergence for the lengths of paths between kernel vertices and the length of a shortest cycle, within any fixed limit component

    Large time dynamics and aging of a polymer chain in a random potential

    Full text link
    We study the out-of-equilibrium large time dynamics of a gaussian polymer chain in a quenched random potential. The dynamics studied is a simple Langevin dynamics commonly referred to as the Rouse model. The equations for the two-time correlation and response function are derived within the gaussian variational approximation. In order to implement this approximation faithfully, we employ the supersymmetric representation of the Martin-Siggia-Rose dynamical action. For a short ranged correlated random potential the equations are solved analytically in the limit of large times using certain assumptions concerning the asymptotic behavior. Two possible dynamical behaviors are identified depending upon the time separation- a stationary regime and an aging regime. In the stationary regime time translation invariance holds and so is the fluctuation dissipation theorem. The aging regime which occurs for large time separations of the two-time correlation functions is characterized by history dependence and the breakdown of certain equilibrium relations. The large time limit of the equations yields equations among the order parameters that are similar to the equations obtained in the statics using replicas. In particular the aging solution corresponds to the broken replica solution. But there is a difference in one equation that leads to important consequences for the solution. The stationary regime corresponds to the motion of the polymer inside a local minimum of the random potential, whereas in the aging regime the polymer hops between different minima. As a byproduct we also solve exactly the dynamics of a chain in a random potential with quadratic correlations.Comment: 21 pages, RevTeX

    Nonlinear looped band structure of Bose-Einstein condensates in an optical lattice

    Full text link
    We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce "swallowtail" looped band structure. By carefully preparing different initial coherent states and observing their subsequent decay, we observe distinct decay rates that provide direct evidence for multivalued, looped band structure. The double well lattice both stabilizes the looped band structure and allows for dynamic preparation of different initial states, including states within the loop structure. We confirm our state preparation procedure with dynamic Gross-Pitaevskii calculations. The excited loop states are found to be more stable than dynamically unstable ground states, but decay faster than expected based on a mean-field stability calculation, indicating the importance of correlations beyond a mean field description.Comment: 6 pages, 6 figure

    Analysis of Gamma Rays and Cosmic Muons with a Single Detector

    Get PDF
    In this paper, we report on the construction and upgrade of a 2002 Lawrence Berkeley National Laboratory (LBNL) Quanknet Cosmic Muons Detector. By adapting this model, we modify the electronics and mechanics to achieve a highly efficient gamma-ray and cosmic-ray detector. Each detector module uses a one-inch-thick scintillator, attached to a photomultiplier tube (PMT) and mounted on a solid aluminum frame. A mechanical support was designed to allow flexible positioning between the two modules. The detector uses scintillation to transform passing radiation into detectable photons that are guided toward a photocathode surface of the PMT, triggering the release of photoelectrons that are then amplified to yield measurable electronic signals. The modules were connected to an electronics section that compared the signals from the two PMTs and logically determined if they were coincidence events. A data-collection device was added for faster count rates and to enable counts for extended times ranging from a few hours to days as needed. Count rates were taken at a variety of distances from the radioactive source, 60Co (cobalt), which produced two gamma rays and a beta particle. To investigate the isotropic behavior of radiation, two detection modules were adjusted to different angles of rotation with respect to each other, and the coincidence counts were measured. The coincidence counts from the modules set at various angles were consistent throughout the angular spectrum, and only lead shielding visibly reduced the number of counts from the radioactive source. The inverse-square-law behavior of radiation has also been considered. The results were such that the number of counts decreased as a function of increasing distance from the source. Furthermore, positioning the detector to point toward the sky in different orientations, we measured cosmic ray muon flux as the angle from the vertical was decreased. In doing so, we scanned different patches of the atmosphere. For the optimum operation during the detection phase, we plateaued both PMTs to single out their best operating gain voltage while eliminating false background noise signals. The detector is more efficient and adaptable in collecting both gamma rays and cosmic-ray muon-flux information

    Critical behaviour of combinatorial search algorithms, and the unitary-propagation universality class

    Full text link
    The probability P(alpha, N) that search algorithms for random Satisfiability problems successfully find a solution is studied as a function of the ratio alpha of constraints per variable and the number N of variables. P is shown to be finite if alpha lies below an algorithm--dependent threshold alpha\_A, and exponentially small in N above. The critical behaviour is universal for all algorithms based on the widely-used unitary propagation rule: P[ (1 + epsilon) alpha\_A, N] ~ exp[-N^(1/6) Phi(epsilon N^(1/3)) ]. Exponents are related to the critical behaviour of random graphs, and the scaling function Phi is exactly calculated through a mapping onto a diffusion-and-death problem.Comment: 7 pages; 3 figure

    The Stellar Populations and Evolution of Lyman Break Galaxies

    Get PDF
    Using deep near-IR and optical observations of the HDF-N from the HST NICMOS and WFPC2 and from the ground, we examine the spectral energy distributions (SEDs) of Lyman break galaxies (LBGs) at 2.0 < z < 3.5. The UV-to-optical rest-frame SEDs of the galaxies are much bluer than those of present-day spiral and elliptical galaxies, and are generally similar to those of local starburst galaxies with modest amounts of reddening. We use stellar population synthesis models to study the properties of the stars that dominate the light from LBGs. Under the assumption that the star-formation rate is continuous or decreasing with time, the best-fitting models provide a lower bound on the LBG mass estimates. LBGs with ``L*'' UV luminosities are estimated to have minimum stellar masses ~ 10^10 solar masses, or roughly 1/10th that of a present-day L* galaxy. By considering the effects of a second component of maximally-old stars, we set an upper bound on the stellar masses that is ~ 3-8 times the minimum estimate. We find only loose constraints on the individual galaxy ages, extinction, metallicities, initial mass functions, and prior star-formation histories. We find no galaxies whose SEDs are consistent with young (< 10^8 yr), dust-free objects, which suggests that LBGs are not dominated by ``first generation'' stars, and that such objects are rare at these redshifts. We also find that the typical ages for the observed star-formation events are significantly younger than the time interval covered by this redshift range (~ 1.5 Gyr). From this, and from the relative absence of candidates for quiescent, non-star-forming galaxies at these redshifts in the NICMOS data, we suggest that star formation in LBGs may be recurrent, with short duty cycles and a timescale between star-formation events of < 1 Gyr. [Abridged]Comment: LaTeX, 37 pages, 21 figures. Accepted for publication in the Astrophysical Journa

    Counting Giant Gravitons in AdS_3

    Full text link
    We quantize the set of all quarter BPS brane probe solutions in global AdS_3 \times S^3 \times T^4/K3 found in arxiv:0709.1168 [hep-th]. We show that, generically, these solutions give rise to states in discrete representations of the SL(2,R) WZW model on AdS_3. Our procedure provides us with a detailed description of the low energy 1/4 and 1/2 BPS sectors of string theory on this background. The 1/4 BPS partition function jumps as we move off the point in moduli space where the bulk theta angle and NS-NS fields vanish. We show that generic 1/2 BPS states are protected because they correspond to geodesics rather than puffed up branes. By exactly quantizing the simplest of the probes above, we verify our description of 1/4 BPS states and find agreement with the known spectrum of 1/2 BPS states of the boundary theory. We also consider the contribution of these probes to the elliptic genus and discuss puzzles, and their possible resolutions, in reproducing the elliptic genus of the symmetric product.Comment: 47 pages; (v2) references and minor clarifications adde
    corecore