5,714 research outputs found
Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner magnetosphere
Initial Cassini observations have revealed evidence for interchanging magnetic flux tubes in the inner Saturnian magnetosphere. Some of the reported flux tubes differ remarkably by their magnetic signatures, having a depressed or enhanced magnetic pressure relative to their surroundings. The ones with stronger fields have been interpreted previously as either outward moving mass-loaded or inward moving plasma-depleted flux tubes based on magnetometer observations only. We use detailed multi-instrumental observations of small and large density depletions in the inner Saturnian magnetosphere from Cassini Rev. A orbit that enable us to discriminate amongst the two previous and opposite interpretations. Our analysis undoubtedly confirms the similar nature of both types of reported interchanging magnetic flux tubes, which are plasma-depleted, whatever their magnetic signatures are. Their different magnetic signature is clearly an effect associated with latitude. These Saturnian plasma-depleted flux tubes ultimately may play a similar role as the Jovian ones
Genetic steps to organ laterality in zebrafish.
All internal organs are asymmetric along the left-right axis. Here we report a genetic screen to discover mutations which perturb organ laterality. Our particular focus is upon whether, and how, organs are linked to each other as they achieve their laterally asymmetric positions. We generated mutations by ENU mutagenesis and examined F3 progeny using a cocktail of probes that reveal early primordia of heart, gut, liver and pancreas. From the 750 genomes examined, we isolated seven recessive mutations which affect the earliest left-right positioning of one or all of the organs. None of these mutations caused discernable defects elsewhere in the embryo at the stages examined. This is in contrast to those mutations we reported previously (Chen et al., 1997) which, along with left-right abnormalities, cause marked perturbation in gastrulation, body form or midline structures. We find that the mutations can be classified on the basis of whether they perturb relationships among organ laterality. In Class 1 mutations, none of the organs manifest any left-right asymmetry. The heart does not jog to the left and normally leftpredominant BMP4 in the early heart tube remains symmetric. The gut tends to remain midline. There frequently is a remarkable bilateral duplication of liver and pancreas. Embryos with Class 2 mutations have organotypic asymmetry but, in any given embryo, organ positions can be normal, reversed or randomized. Class 3 reveals a hitherto unsuspected gene that selectively affects laterality of heart. We find that visceral organ positions are predicted by the direction of the preceding cardiac jog. We interpret this as suggesting that normally there is linkage between cardiac and visceral organ laterality. Class 1 mutations, we suggest, effectively remove the global laterality signals, with the consequence that organ positions are effectively symmetrical. Embryos with Class 2 mutations do manifest linkage among organs, but it may be reversed, suggesting that the global signals may be present but incorrectly orientated in some of the embryos. That laterality decisions of organs may be independently perturbed, as in the Class 3 mutation, indicates that there are distinctive pathways for reception and organotypic interpretation of the global signals
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
Understanding and mitigating decoherence is a key challenge for quantum
science and technology. The main source of decoherence for solid-state spin
systems is the uncontrolled spin bath environment. Here, we demonstrate quantum
control of a mesoscopic spin bath in diamond at room temperature that is
composed of electron spins of substitutional nitrogen impurities. The resulting
spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre
electron spin as a magnetic field sensor. We exploit the spin bath control to
dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by
combining spin bath control with dynamical decoupling, we directly measure the
coherence and temporal correlations of different groups of bath spins. These
results uncover a new arena for fundamental studies on decoherence and enable
novel avenues for spin-based magnetometry and quantum information processing
On the nonequilibrium entropy of large and small systems
Thermodynamics makes definite predictions about the thermal behavior of
macroscopic systems in and out of equilibrium. Statistical mechanics aims to
derive this behavior from the dynamics and statistics of the atoms and
molecules making up these systems. A key element in this derivation is the
large number of microscopic degrees of freedom of macroscopic systems.
Therefore, the extension of thermodynamic concepts, such as entropy, to small
(nano) systems raises many questions. Here we shall reexamine various
definitions of entropy for nonequilibrium systems, large and small. These
include thermodynamic (hydrodynamic), Boltzmann, and Gibbs-Shannon entropies.
We shall argue that, despite its common use, the last is not an appropriate
physical entropy for such systems, either isolated or in contact with thermal
reservoirs: physical entropies should depend on the microstate of the system,
not on a subjective probability distribution. To square this point of view with
experimental results of Bechhoefer we shall argue that the Gibbs-Shannon
entropy of a nano particle in a thermal fluid should be interpreted as the
Boltzmann entropy of a dilute gas of Brownian particles in the fluid
Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed
The motor theory of speech perception holds that we perceive the speech of
another in terms of a motor representation of that speech. However, when we
have learned to recognize a foreign accent, it seems plausible that recognition
of a word rarely involves reconstruction of the speech gestures of the speaker
rather than the listener. To better assess the motor theory and this
observation, we proceed in three stages. Part 1 places the motor theory of
speech perception in a larger framework based on our earlier models of the
adaptive formation of mirror neurons for grasping, and for viewing extensions
of that mirror system as part of a larger system for neuro-linguistic
processing, augmented by the present consideration of recognizing speech in a
novel accent. Part 2 then offers a novel computational model of how a listener
comes to understand the speech of someone speaking the listener's native
language with a foreign accent. The core tenet of the model is that the
listener uses hypotheses about the word the speaker is currently uttering to
update probabilities linking the sound produced by the speaker to phonemes in
the native language repertoire of the listener. This, on average, improves the
recognition of later words. This model is neutral regarding the nature of the
representations it uses (motor vs. auditory). It serve as a reference point for
the discussion in Part 3, which proposes a dual-stream neuro-linguistic
architecture to revisits claims for and against the motor theory of speech
perception and the relevance of mirror neurons, and extracts some implications
for the reframing of the motor theory
REPLY: Answer to the comment of Casas et al. about González Acebrón et al.’s (2011) paper
Depto. de Mineralogía y PetrologíaFac. de Ciencias GeológicasTRUEpu
Do adults with high functioning autism or Asperger Syndrome differ in empathy and emotion recognition?
The present study examined whether adults with high functioning autism (HFA) showed greater difficulties in (i) their self-reported ability to empathise with others and/or (ii) their ability to read mental states in others’ eyes than adults with Asperger syndrome (AS). The Empathy Quotient (EQ) and ‘Reading the Mind in the Eyes’ Test (Eyes Test) were compared in 43 adults with AS and 43 adults with HFA. No significant difference was observed on EQ score between groups, while adults with AS performed significantly better on the Eyes Test than those with HFA. This suggests that adults with HFA may need more support, particularly in mentalizing and complex emotion recognition, and raises questions about the existence of subgroups within autism spectrum conditions
Recommended from our members
A randomized trial and novel SPR technique identifies altered lipoprotein-LDL receptor binding as a mechanism underlying elevated LDL-cholesterol in APOE4s
At a population level APOE4 carriers (~25% Caucasians) are at higher risk of cardiovascular diseases. The penetrance of genotype is however variable and influenced by dietary fat composition, with the APOE4 allele associated with greater LDL-cholesterol elevation in response to saturated fatty acids (SFA). The etiology of this greater responsiveness is unknown. Here a novel surface plasmon resonance technique (SPR) is developed and used, along with hepatocyte (with the liver being the main organ modulating lipoprotein metabolism and plasma lipid levels) uptake studies to establish the impact of dietary fatty acid composition on, lipoprotein-LDL receptor (LDLR) binding, and hepatocyte uptake, according to APOE genotype status. In men prospectively recruited according to APOE genotype (APOE3/3 common genotype, or APOE3/E4), triglyceride-rich lipoproteins (TRLs) were isolated at fasting and 4-6 h following test meals rich in SFA, unsaturated fat and SFA with fish oil. In APOE4s a greater LDLR binding affinity of postprandial TRL after SFA, and lower LDL binding and hepatocyte internalization, provide mechanisms for the greater LDL-cholesterol raising effect. The SPR technique developed may be used for the future study of the impact of genotype, and physiological and behavioral variables on lipoprotein metabolism
Association of MC1R Variants and host phenotypes with melanoma risk in CDKN2A mutation carriers: a GenoMEL study
<p><b>Background</b> Carrying the cyclin-dependent kinase inhibitor 2A (CDKN2A) germline mutations is associated with a high risk for melanoma. Penetrance of CDKN2A mutations is modified by pigmentation characteristics, nevus phenotypes, and some variants of the melanocortin-1 receptor gene (MC1R), which is known to have a role in the pigmentation process. However, investigation of the associations of both MC1R variants and host phenotypes with melanoma risk has been limited.</p>
<p><b>Methods</b> We included 815 CDKN2A mutation carriers (473 affected, and 342 unaffected, with melanoma) from 186 families from 15 centers in Europe, North America, and Australia who participated in the Melanoma Genetics Consortium. In this family-based study, we assessed the associations of the four most frequent MC1R variants (V60L, V92M, R151C, and R160W) and the number of variants (1, ≥2 variants), alone or jointly with the host phenotypes (hair color, propensity to sunburn, and number of nevi), with melanoma risk in CDKN2A mutation carriers. These associations were estimated and tested using generalized estimating equations. All statistical tests were two-sided.</p>
<p><b>Results</b> Carrying any one of the four most frequent MC1R variants (V60L, V92M, R151C, R160W) in CDKN2A mutation carriers was associated with a statistically significantly increased risk for melanoma across all continents (1.24 × 10−6 ≤ P ≤ .0007). A consistent pattern of increase in melanoma risk was also associated with increase in number of MC1R variants. The risk of melanoma associated with at least two MC1R variants was 2.6-fold higher than the risk associated with only one variant (odds ratio = 5.83 [95% confidence interval = 3.60 to 9.46] vs 2.25 [95% confidence interval = 1.44 to 3.52]; Ptrend = 1.86 × 10−8). The joint analysis of MC1R variants and host phenotypes showed statistically significant associations of melanoma risk, together with MC1R variants (.0001 ≤ P ≤ .04), hair color (.006 ≤ P ≤ .06), and number of nevi (6.9 × 10−6 ≤ P ≤ .02).</p>
<p><b>Conclusion</b> Results show that MC1R variants, hair color, and number of nevi were jointly associated with melanoma risk in CDKN2A mutation carriers. This joint association may have important consequences for risk assessments in familial settings.</p>
Multi-slice ptychographic tomography
Ptychography is a form of Coherent Diffractive Imaging, where diffraction patterns are processed by iterative algorithms to recover an image of a specimen. Although mostly applied in two dimensions, ptychography can be extended to produce three dimensional images in two ways: via multi-slice ptychography or ptychographic tomography. Ptychographic tomography relies on 2D ptychography to supply projections to conventional tomographic algorithms, whilst multi-slice ptychography uses the redundancy in ptychographic data to split the reconstruction into a series of axial slices. Whilst multi-slice ptychography can handle multiple-scattering thick specimens and has a much smaller data requirement than ptychographic tomography, its depth resolution is relatively poor. Here we propose an imaging modality that combines the benefits of the two approaches, enabling isotropic 3D resolution imaging of thick specimens with a small number of angular measurements. Optical experiments validate our proposed method
- …
