4,148 research outputs found
Composite-pulse magnetometry with a solid-state quantum sensor
The sensitivity of quantum magnetometers is challenged by control errors and,
especially in the solid-state, by their short coherence times. Refocusing
techniques can overcome these limitations and improve the sensitivity to
periodic fields, but they come at the cost of reduced bandwidth and cannot be
applied to sense static (DC) or aperiodic fields. Here we experimentally
demonstrate that continuous driving of the sensor spin by a composite pulse
known as rotary-echo (RE) yields a flexible magnetometry scheme, mitigating
both driving power imperfections and decoherence. A suitable choice of RE
parameters compensates for different scenarios of noise strength and origin.
The method can be applied to nanoscale sensing in variable environments or to
realize noise spectroscopy. In a room-temperature implementation based on a
single electronic spin in diamond, composite-pulse magnetometry provides a
tunable trade-off between sensitivities in the microT/sqrt(Hz) range,
comparable to those obtained with Ramsey spectroscopy, and coherence times
approaching T1
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
Australian Sphingidae – DNA Barcodes Challenge Current Species Boundaries and Distributions
© 2014 Rougerie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article
Replication of LDL SWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses
<p><b>Background:</b> The PHArmacogenetic study of Statins in the Elderly at risk (PHASE) is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER) that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER/PHASE project and second show that the PROSPER/PHASE study can be used to study pharmacogenetics in the elderly.</p>
<p><b>Methods:</b> The genome wide association study (GWAS) was conducted using the Illumina 660K-Quad beadchips following manufacturer's instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification.</p>
<p><b>Results:</b> Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE/APOC1; LDLR; FADS2/FEN1; HMGCR; PSRC1/CELSR5). The top SNP (rs445925, chromosome 19) with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19) with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results.</p>
<p><b>Conclusion:</b> With the GWAS in the PROSPER/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof-of-principle study we show that the PROSPER/PHASE study can be used to investigate genetic associations in a similar way to population based studies. The next step of the PROSPER/PHASE study is to identify the genetic variation responsible for the variation in LDL-cholesterol lowering in response to statin treatment in collaboration with other large trials.</p>
Predictability of evolutionary trajectories in fitness landscapes
Experimental studies on enzyme evolution show that only a small fraction of
all possible mutation trajectories are accessible to evolution. However, these
experiments deal with individual enzymes and explore a tiny part of the fitness
landscape. We report an exhaustive analysis of fitness landscapes constructed
with an off-lattice model of protein folding where fitness is equated with
robustness to misfolding. This model mimics the essential features of the
interactions between amino acids, is consistent with the key paradigms of
protein folding and reproduces the universal distribution of evolutionary rates
among orthologous proteins. We introduce mean path divergence as a quantitative
measure of the degree to which the starting and ending points determine the
path of evolution in fitness landscapes. Global measures of landscape roughness
are good predictors of path divergence in all studied landscapes: the mean path
divergence is greater in smooth landscapes than in rough ones. The
model-derived and experimental landscapes are significantly smoother than
random landscapes and resemble additive landscapes perturbed with moderate
amounts of noise; thus, these landscapes are substantially robust to mutation.
The model landscapes show a deficit of suboptimal peaks even compared with
noisy additive landscapes with similar overall roughness. We suggest that
smoothness and the substantial deficit of peaks in the fitness landscapes of
protein evolution are fundamental consequences of the physics of protein
folding.Comment: 14 pages, 7 figure
The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein
The folding pathway and rate coefficients of the folding of a knotted protein
are calculated for a potential energy function with minimal energetic
frustration. A kinetic transition network is constructed using the discrete
path sampling approach, and the resulting potential energy surface is
visualized by constructing disconnectivity graphs. Owing to topological
constraints, the low-lying portion of the landscape consists of three distinct
regions, corresponding to the native knotted state and to configurations where
either the N- or C-terminus is not yet folded into the knot. The fastest
folding pathways from denatured states exhibit early formation of the
N-terminus portion of the knot and a rate-determining step where the C-terminus
is incorporated. The low-lying minima with the N-terminus knotted and the
C-terminus free therefore constitute an off-pathway intermediate for this
model. The insertion of both the N- and C-termini into the knot occur late in
the folding process, creating large energy barriers that are the rate limiting
steps in the folding process. When compared to other protein folding proteins
of a similar length, this system folds over six orders of magnitude more
slowly.Comment: 19 page
Holographic Conductivity in Disordered Systems
The main purpose of this paper is to holographically study the behavior of
conductivity in 2+1 dimensional disordered systems. We analyze probe D-brane
systems in AdS/CFT with random closed string and open string background fields.
We give a prescription of calculating the DC conductivity holographically in
disordered systems. In particular, we find an analytical formula of the
conductivity in the presence of codimension one randomness. We also
systematically study the AC conductivity in various probe brane setups without
disorder and find analogues of Mott insulators.Comment: 43 pages, 28 figures, latex, references added, minor correction
Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals
We employ a recently formulated dequantization procedure to obtain an exact
expression for the kinetic energy which is applicable to all kinetic-energy
functionals. We express the kinetic energy of an N-electron system as the sum
of an N-electron classical kinetic energy and an N-electron purely quantum
kinetic energy arising from the quantum fluctuations that turn the classical
momentum into the quantum momentum. This leads to an interesting analogy with
Nelson's stochastic approach to quantum mechanics, which we use to conceptually
clarify the physical nature of part of the kinetic-energy functional in terms
of statistical fluctuations and in direct correspondence with Fisher
Information Theory. We show that the N-electron purely quantum kinetic energy
can be written as the sum of the (one-electron) Weizsacker term and an
(N-1)-electron kinetic correlation term. We further show that the Weizsacker
term results from local fluctuations while the kinetic correlation term results
from the nonlocal fluctuations. For one-electron orbitals (where kinetic
correlation is neglected) we obtain an exact (albeit impractical) expression
for the noninteracting kinetic energy as the sum of the classical kinetic
energy and the Weizsacker term. The classical kinetic energy is seen to be
explicitly dependent on the electron phase and this has implications for the
development of accurate orbital-free kinetic-energy functionals. Also, there is
a direct connection between the classical kinetic energy and the angular
momentum and, across a row of the periodic table, the classical kinetic energy
component of the noninteracting kinetic energy generally increases as Z
increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
- …
