1,235 research outputs found

    Human dendritic cells process and present Listeria antigens for in vitro priming of autologous CD4+ T lymphocytes

    Get PDF
    The role of human dendritic cells (DC) in the immune response toward intracellularly growing Listeria was analyzed under in vitro conditions using several morphological and functional methods. DC incubated with Listeria innocua and L. monocytogenes, respectively, readily phagocytosed the bacteria. Listeria did not impair viability and immunogenic potential of human DC. Listerial antigens were found to be processed within the lysosomal compartment of DC and colocalized with major histocompatibility complex (MHC) class II molecules, as shown by fluorescence and transmission electron microscopy. DC challenged with apathogenic L. innocua were highly effective in priming autologous naïve T cells (mainly CD4+) in vitro. The T cells strongly proliferated in the presence of DC incubated with L. innocua, which could be significantly inhibited by anti-MHC II mAb. L. innocua-primed T cells were also successfully stimulated by DC harboring the pathogenic L. monocytogenes, either the wild-type strain EGD or the p60 reduced mutant strain RIII. From our results, we conclude that human DC infected with nonpathogenic intracellular bacteria are able to efficiently prime naïve T cells, which are then suitable for recognition of antigens derived from related virulent bacterial species. This in vitro human model provides an interesting tool for basic research in infectious immunology and possibly for a new immunotherap

    Hepatic Macrosteatosis Is Partially Converted to Microsteatosis by Melatonin Supplementation in ob/ob Mice Non-Alcoholic Fatty Liver Disease

    Get PDF
    Obesity is a common risk factor for non-alcoholic fatty liver disease (NAFLD). Currently, there are no specific treatments against NAFLD. Thus, examining any molecule with potential benefits against this condition emerged melatonin as a molecule that influences metabolic dysfunctions. The aim of this study was to determine whether melatonin would function against NAFDL, studying morphological, ultrastuctural and metabolic markers that characterize the liver of ob/ob mice

    Placental endoplasmic reticulum stress in gestational diabetes: the potential for therapeutic intervention with chemical chaperones and antioxidants.

    Get PDF
    AIMS/HYPOTHESIS: The aim of this work was to determine whether placental endoplasmic reticulum (ER) stress may contribute to the pathophysiology of gestational diabetes mellitus (GDM) and to test the efficacy of chemical chaperones and antioxidant vitamins in ameliorating that stress in a trophoblast-like cell line in vitro. METHODS: Placental samples were obtained from women suffering from GDM and from normoglycaemic controls and were frozen immediately. Women with GDM had 2 h serum glucose levels > 9.0 mmol/l following a 75 g oral glucose tolerance test and were treated with diet and insulin when necessary. Western blotting was used to assess markers of ER stress. To test the effects of hyperglycaemia on the generation of ER stress, a new trophoblast-like cell line, BeWo-NG, was generated by culturing in a physiological glucose concentration of 5.5 mmol/l (over 20 passages) before challenging with 10 or 20 mmol/l glucose. RESULTS: All GDM patients were well-controlled (HbA1c 5.86 ± 0.55% or 40.64 ± 5.85 mmol/mol, n = 11). Low-grade ER stress was observed in the placental samples, with dilation of ER cisternae and increased phosphorylation of eukaryotic initiation factor 2 subunit α. Challenge of BeWo-NG with high glucose activated the same pathways, but this was as a result of acidosis of the culture medium rather than the glucose concentration per se. Addition of chemical chaperones 4-phenylbutyrate and tauroursodeoxycholic acid and vitamins C and E ameliorated the ER stress. CONCLUSIONS/INTERPRETATION: This is the first report of placental ER stress in GDM patients. Chemical chaperones and antioxidant vitamins represent potential therapeutic interventions for GDM.This study was supported by a grant from the Wellcome Trust (084804/2/08/Z). TE-B was supported by a Newton Advanced Fellowship awarded to TE-B and GJB from the Academy of Medical Sciences, and by the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro.This is the final version of the article. It first appeared from Springer via http://dx.doi.org/10.1007/s00125-016-4040-

    Cholesterol in Negatively Charged Lipid Bilayers Modulates the Effect of the Antimicrobial Protein Granulysin

    Get PDF
    The release of granulysin, a 9-kDa cationic protein, from lysosomal granules of cytotoxic T lymphocytes and natural killer cells plays an important role in host defense against microbial pathogens. Granulysin is endocytosed by the infected target cell via lipid rafts and kills subsequently intracellular bacteria. The mechanism by which granulysin binds to eukaryotic and prokaryotic cells but lyses only the latter is not well understood. We have studied the effect of granulysin on large unilamellar vesicles (LUVs) and supported bilayers with prokaryotic and eukaryotic lipid mixtures or model membranes with various lipid compositions and charges. Binding of granulysin to bilayers with negative charges, as typically found in bacteria and lipid rafts of eukaryotic cells, was shown by immunoblotting. Fluorescence release assays using LUV revealed an increase in permeability of prokaryotic, negatively charged and lipid raft-like bilayers devoid of cholesterol. Changes in permeability of these bilayers could be correlated to defects of various sizes penetrating supported bilayers as shown by atomic force microscopy. Based on these results, we conclude that granulysin causes defects in negatively charged cholesterol-free membranes, a membrane composition typically found in bacteria. In contrast, granulysin is able to bind to lipid rafts in eukaryotic cell membranes, where it is taken up by the endocytotic pathway, leaving the cell intac

    EPS-SJ exopolisaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells

    Get PDF
    The aim of this study was to determine the role of an exopolysaccharide produced by natural dairy isolate Lactobacillus paracasei subsp. paracasei BGSJ2-8, in the adhesion to intestinal epithelial cells and a decrease in Escherichia coli's association with Caco-2 cells. Annotation of the BGSJ2-8 genome showed the presence of a gene cluster, epsSJ, which encodes the biosynthesis of the strain-specific exopolysaccharide EPS-SJ, detected as two fractions (P1 and P2) by size exclusion chromatography (SEC) coupled with multi-angle laser light scattering (MALLS) detection. SEC-MALLS analysis revealed that an EPS-SJ- mutant (EPS7, obtained by insertion mutagenesis of the glps_2198 gene encoding primary glycosyltransferase) does not produce the P2 fraction of EPS-SJ. Transmission electron microscopy showed that EPS7 mutant has a thinner cell wall compared to the EPS-SJ strain BGSJ2-83 (a plasmid free-derivative of BGSJ2-8). Interestingly, strain BGSJ2-83 showed higher adhesion to Caco-2 epithelial intestinal cell line than the EPS7 mutant. Accordingly, BGSJ2-83 effectively reduced E. coli ATCC25922's association with Caco-2 cells, while EPS7 did not show statistically significant differences. In addition, the effect of EPS-SJ on the proliferation of lymphocytes in gastrointestinal associated lymphoid tissue (GALT) was tested and the results showed that the reduction of GALT lymphocyte proliferation was higher by BGSJ2-83 than by the mutant. To the best of our knowledge this is the first report indicating that the presence of EPS (EPS-SJ) on the surface of lactobacilli can improve communication between bacteria and intestinal epithelium*Implying its possible role in gut colonization.Peer Reviewe

    Capability of exopolysaccharide-producing Lactobacillus paraplantarum BGCG11 and its non-producing isogenic strain NB1, to counteract the effect of enteropathogens upon the epithelial cell line HT29-MTX

    Get PDF
    The putative protective role of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11, and its non-EPS-producing isogenic strain NB1, was tested upon HT29-MTX monolayers challenged with seven opportunistic pathogens. The probiotic strain Lactobacillus rhamnosus LMG18243 (GG) was used as a reference bacterium. Tested lactobacilli were able to efficiently reduce the attachment to HT29-MTX of most pathogens. Lb. paraplantarum NB1 and Lb. rhamnosus GG were more efficient reducing the adhesion of Clostridium difficile or Yersinia enterocolitica than Lb. paraplantarum BGCG11, while strain BGCG11 reduced, to a greater extent, the adhesion of Escherichia coli and Listeria monocytogenes. The detachment and cell lysis of HT29-MTX monolayers in the presence of pathogens alone and co-incubated with lactobacilli or purified EPS was followed. L. monocytogenes induced the strongest cell detachment among the seven tested pathogens and this effect was prevented by addition of purified EPS-CG11. The results suggest that this EPS could be an effective macromolecule in protection of HT29-MTX cells from the pathogen-induced lysis. Regarding innate intestinal barrier, the presence of C. difficile induced the highest IL-8 production in HT29-MTX cells and this capability was reinforced by the co-incubation with Lb. paraplantarum NB1 and Lb. rhamnosus GG. However, the increase in IL-8 production was not noticed when C. difficile was co-incubated with EPS-producing Lb. paraplantarum BGCG11 strain or its purified EPS-CG11 polymer, thus indicating that the polymer could hinder the contact of bacteria with the intestinal epithelium. The measurement of mucus secreted by HT29-MTX and the expression of muc1, muc2, muc3B and muc5AC genes in the presence of pathogens and lactobacilli suggested that all lactobacilli strains are weak >co-adjuvants> helping some pathogens to slightly increase the secretion of mucus by HT29-MTX, while purified EPS-CG11 did not induce mucus secretion. Taking altogether, Lb. paraplantarum BGCG11 could act towards the reinforcement of the innate mucosal barrier through the synthesis of a physical-protective EPS layer which could make difficult the contact of the pathogens with the epithelial cells. © 2015 Elsevier Ltd.This work was financed by the Spanish Ministry of Economy and Competiveness (MINECO) and FEDER funds (European Union) through the project AGL2012-33278, as well as by the Ministry of Education, Science and Technological Development of the Republic of Serbia grant No. 173019. The bilateral collaboration project AIB2010SE-00386 between Spain and the Republic of Serbia allowed the mobility of personnel between both institutions. C. Hidalgo-Cantabrana acknowledges his FPI pre-doctoral fellowship to MINECO (BES-2010-038270).Peer Reviewe

    Continuous blood glucose monitoring reveals enormous circadian variations in pregnant diabetic rats

    Get PDF
    Aim: Diabetes in pregnancy is a major burden with acute and long-term consequences. Its treatment requires adequate diagnosis and monitoring of therapy. Many experimental research on diabetes during pregnancy has been performed in rats. Recently, continuous blood glucose monitoring of non-pregnant diabetic rats revealed an increased circadian variability of blood glucose that made a single blood glucose measurement per day inappropriate to reflect glycemic status. Continuous blood glucose measurement has never been performed in pregnant rats. We wanted to perform continuous blood glucose monitoring in pregnant rats to decipher the influence of pregnancy on blood glucose in diabetic and normoglycemic status. Methods: We used the transgenic Tet29 diabetes rat model with an inducible knock down of the insulin receptor via RNA interference upon application of doxycycline (DOX) leading to insulin resistant type II diabetes. All Tet29 rats received a HD-XG telemetry implant (Data Sciences International, USA) that measured blood glucose and activity continuously. Rats were divided into four groups and blood glucose was monitored until end of pregnancy or the corresponding period: Tet29 + DOX (diabetic) non-pregnant, Tet29 + DOX (diabetic) pregnant, Tet29 (normoglycemic) non-pregnant, Tet29 (normoglycemic) pregnant. Results: Allanalyzed rats displayed a circadian variation in blood glucose concentration. Circadian variability was much more pronounced in pregnant diabetic rats than in normoglycemic pregnant rats. Pregnancy ameliorated variation in blood glucose in diabetic situation. Pregnancy continuously decreased blood glucose during normoglycemic pregnancy. Diabetic rats were less active than normoglycemic rats. We performed a calculation showing that application of continuous blood glucose measurement reduces Interpretation: Continuous blood glucose monitoring via a telemetry device in pregnant rats provides a more informative picture of the glycemic situation in comparison to single measurements. This could improve diagnosis and therapy of diabetes, decrease animal numbers within experimental settings, and add another physiological parameter (activity) to the analysis that could be helpful in testing therapeutic concepts targeting blood glucose levels and peripheral muscle function. We propose continuous glucose monitoring as a new tool for the evaluation of pregnant diabetic rats

    Clinical studies on a still hot topic

    Get PDF
    The thesis aims to advance the understanding of severe chronic kidney disease in lithium-treated patients through four observational studies in which subjects were recruited from the Sahlgrenska University Hospital laboratory database. The findings of Paper I revealed a gradual increase in adherence to lithium monitoring guidelines over 30 years, with mean lithium levels decreasing over time, within the recommended range. Paper II showed an almost sevenfold increased risk of severe chronic kidney disease in patients with moderately elevated serum creatinine, indicating pre-existent renal damage, prior to lithium initiation, compared to matched controls. Paper III indicated that a low (1%) risk of severe chronic kidney disease during the first ten years of lithium treatment remained unchanged over a time span of three decades. Paper IV highlighted age-dependent variations in the lifetime risk of severe chronic kidney disease, with the highest risk in patients starting lithium at age 65-74 years. Patients below 55 years of age at lithium start had negligible 10-year risk. Prolonged lithium exposure, especially over 20 years, was a significant risk factor. The findings corroborate the notion that lithium treatment per se poses a certain risk of severe chronic kidney disease. While pretreatment renal impairment markedly elevates the risk, a normal serum creatinine level is associated with moderate excess risk and should not preclude lithium use in patients who could benefit from it. Key predictors of severe renal impairment include age, baseline creatinine and duration of lithium exposure, with no significant influence of sex

    Band Tails and Disordered Potentials

    Get PDF
    It has long been known that the density of states in a semiconductor decays expo nentially into the gap. This tail in the density of states is caused by impurities in the atomic lattice that creates localized states with energies in the gap region. By modeling the impurities as a correlated Gaussian disorder potential, it is possible to utilize path integrals to calculate the density of states in the tails. In this thesis, I examine how the form of the dispersion relation of the band affects the band tail when compared to a standard parabolic dispersion |k|2. I find that for monomial dispersions |k| q with powers higher than q = 2 there does not exist any region with a purely exponential decay, only regions where it decays quicker. For double-well dispersions I find that the density of states decays in a slightly different, but still comparable way to monomial dispersion
    corecore