245 research outputs found

    Ground-Based Coronagraphy with High Order Adaptive Optics

    Get PDF
    We summarize the theory of coronagraphic optics, and identify a dimensionless fine-tuning parameter, F, which we use to describe the Lyot stop size in the natural units of the coronagraphic optical train and the observing wavelength. We then present simulations of coronagraphs matched to adaptive optics (AO) systems on the Calypso 1.2m, Palomar Hale 5m and Gemini 8m telescopes under various atmospheric conditions, and identify useful parameter ranges for AO coronagraphy on these telescopes. Our simulations employ a tapered, high-pass filter in spatial frequency space to mimic the action of adaptive wavefront correction. We test the validity of this representation of AO correction by comparing our simulations with recent K-band data from the 241-channel Palomar Hale AO system and its dedicated PHARO science camera in coronagraphic mode.Comment: To appear in ApJ, May 2001 (28 pages, 10 figs

    Seventy-One New L and T Dwarfs from the Sloan Digital Sky Survey

    Full text link
    We present near-infrared observations of 71 newly discovered L and T dwarfs, selected from imaging data of the Sloan Digital Sky Survey (SDSS) using the i-dropout technique. Sixty-five of these dwarfs have been classified spectroscopically according to the near-infrared L dwarf classification scheme of Geballe et al. and the unified T dwarf classification scheme of Burgasser et al. The spectral types of these dwarfs range from L3 to T7, and include the latest types yet found in the SDSS. Six of the newly identified dwarfs are classified as early- to mid-L dwarfs according to their photometric near-infrared colors, and two others are classified photometrically as M dwarfs. We also present new near-infrared spectra for five previously published SDSS L and T dwarfs, and one L dwarf and one T dwarf discovered by Burgasser et al. from the Two Micron All Sky Survey. The new SDSS sample includes 27 T dwarfs and 30 dwarfs with spectral types spanning the complex L-T transition (L7-T3). We continue to see a large (~0.5 mag) spread in J-H for L3 to T1 types, and a similar spread in H-K for all dwarfs later than L3. This color dispersion is probably due to a range of grain sedimentation properties, metallicity, and gravity. We also find L and T dwarfs with unusual colors and spectral properties that may eventually help to disentangle these effects.Comment: accepted by AJ, 18 pages, 10 figures, 5 tables, emulateapj layou

    Physical and Spectral Characteristics of the T8 and Later-Type Dwarfs

    Full text link
    We use new and published near-IR spectra, with synthetic spectra, to derive physical properties of three of the latest-type T dwarfs. A new R~1700 spectrum of the T7.5 dwarf HD 3651B, with existing data, allows a detailed comparison to the well-studied and very similar dwarf, Gl 570D. We find that HD 3651B has both higher gravity and metallicity than Gl 570D, with Teff=820-830K, log g= 5.4-5.5, [m/H]= +0.2 and Kzz=10^4cm^2/s. Its age is 8-12 Gyr and its implied mass is 60-70 M_Jup. We perform a similar analyis of the T8 and T7.5 dwarfs 2MASS J09393548-2448279 and 2MASS J11145133-2618235 using published data, comparing them to the well-studied T8, 2MASS J04151954-0935066. We find that the two dwarfs have the same Teff as the reference dwarf, and similar gravities, but lower metallicities. The parameters are Teff=725-775K and [m/H]= -0.3; log g=5.3-5.45 for 2MASS J09393548-2448279 and log g=5.0-5.3 for 2MASS J11145133- 261823. The age and mass are ~10Gyr and 60M_Jup for 2MASS J09393548-2448279, and ~5 Gyr and 40M_Jup for 2MASS J11145133-261823. A serious limitation is the incompleteness of the line lists of CH4 and NH3 at lambda <1.7um. Spectra of Saturn and Jupiter, and of laboratory CH4 and NH3 gas, suggest that NH3 features in the Y- and J-bands may be useful as indicators of the next cooler spectral type, and not features in the H- and K-bands as previously thought. However large uncertainties remain, as the abundance of NH3 is likely to be significantly below the chemical equilibrium value, and inclusion of laboratory NH3 opacities predicts band shapes that are discrepant with existing data. It is possible that the T spectral class will have to be extended to low temperatures around 400K, when water clouds condense in the atmosphere [abridged].Comment: 34 pages including 10 figures and two tables; accepted for publication in the Astrophysical Journa

    HST/ACS Images of the GG Tauri Circumbinary Disk

    Full text link
    Hubble Space Telescope Advanced Camera for Surveys images of the young binary GG Tauri and its circumbinary disk in V and I bandpasses were obtained in 2002 and are the most detailed of this system to date. The confirm features previously seen in the disk including: a "gap" apparently caused by shadowing from circumstellar material; an asymmetrical distribution of light about the line of sight on the near edge of the disk; enhanced brightness along the near edge of the disk due to forward scattering; and a compact reflection nebula near the secondary star. New features are seen in the ACS images: two short filaments along the disk; localized but strong variations in disk intensity ("gaplets"); and a "spur" or filament extending from the reflection nebulosity near the secondary. The back side of the disk is detected in the V band for the first time. The disk appears redder than the combined light from the stars, which may be explained by a varied distribution of grain sizes. The brightness asymmetries along the disk suggest that it is asymmetrically illuminated by the stars due to extinction by nonuniform circumstellar material or the illuminated surface of the disk is warped by tidal effects (or perhaps both). Localized, time-dependent brightness variations in the disk are also seen.Comment: 28 pages, 7 figures, accepted for publication in the Astronomical Journa

    Spectroscopic Detection of Carbon Monoxide in Two Late-type T Dwarfs

    Full text link
    M band spectra of two late-type T dwarfs, 2MASS J09373487+2931409, and Gliese 570D, confirm evidence from photometry that photospheric CO is present at abundance levels far in excess of those predicted from chemical equilibrium. These new and unambiguous detections of CO, together with an earlier spectroscopic detection of CO in Gliese 229B and existing M band photometry of a large selection of T dwarfs, suggest that vertical mixing in the photosphere drives the CO abundance out of chemical equilibrium and is a common, and likely universal feature of mid-to-late type T dwarfs. The M band spectra allow determinations of the time scale of vertical mixing in the atmosphere of each object, the first such measurements of this important parameter in late T dwarfs. A detailed analysis of the spectral energy distribution of 2MASS J09373487+2931409 results in the following values for metallicity, temperature, surface gravity, and luminosity: [M/H]~-0.3, T_eff=925-975K, log g=5.20-5.47, log L/L_sun=-5.308 +/- 0.027. The age is 3-10 Gyr and the mass is in the range 45-69 M_Jup.Comment: 36 pages incl. 12 figures and 3 tables, accepted by Ap

    High speed quadrant CCDs for adaptive optics

    Get PDF
    The Johns Hopkins University is developing an adaptive optics coronagraph for the study of circumstellar material at high resolution. The first generation instrument corrects for image motion, i.e., wavefront tilt, using an image motion sensor coupled to a high speed tip/tilt mirror. The image motion sensor is built around a quadrant CCD which detects offsets from the null position. The performance of this device and present results demonstrating its operation in the laboratory are discussed

    Sub-Pixel Response Measurement of Near-Infrared Sensors

    Get PDF
    Wide-field survey instruments are used to efficiently observe large regions of the sky. To achieve the necessary field of view, and to provide a higher signal-to-noise ratio for faint sources, many modern instruments are undersampled. However, precision photometry with undersampled imagers requires a detailed understanding of the sensitivity variations on a scale much smaller than a pixel. To address this, a near-infrared spot projection system has been developed to precisely characterize near-infrared focal plane arrays and to study the effect of sub-pixel non uniformity on precision photometry. Measurements of large format near-infrared detectors demonstrate the power of this system for understanding sub-pixel response.Comment: 9 pages, 13 figures, submitted to PAS
    corecore