2,570 research outputs found

    The Expected Number of Maximal Points of the Convolution of Two 2-D Distributions

    Get PDF
    The Maximal points in a set S are those that are not dominated by any other point in S. Such points arise in multiple application settings and are called by a variety of different names, e.g., maxima, Pareto optimums, skylines. Their ubiquity has inspired a large literature on the expected number of maxima in a set S of n points chosen IID from some distribution. Most such results assume that the underlying distribution is uniform over some spatial region and strongly use this uniformity in their analysis. This research was initially motivated by the question of how this expected number changes if the input distribution is perturbed by random noise. More specifically, let B_p denote the uniform distribution from the 2-dimensional unit ball in the metric L_p. Let delta B_q denote the 2-dimensional L_q-ball, of radius delta and B_p + delta B_q be the convolution of the two distributions, i.e., a point v in B_p is reported with an error chosen from delta B_q. The question is how the expected number of maxima change as a function of delta. Although the original motivation is for small delta, the problem is well defined for any delta and our analysis treats the general case. More specifically, we study, as a function of n,delta, the expected number of maximal points when the n points in S are chosen IID from distributions of the type B_p + delta B_q where p,q in {1,2,infty} for delta > 0 and also of the type B_infty + delta B_q where q in [1,infty) for delta > 0. For fixed p,q we show that this function changes "smoothly" as a function of delta but that this smooth behavior sometimes transitions unexpectedly between different growth behaviors

    More Efficient Algorithms and Analyses for Unequal Letter Cost Prefix-Free Coding

    Full text link
    There is a large literature devoted to the problem of finding an optimal (min-cost) prefix-free code with an unequal letter-cost encoding alphabet of size. While there is no known polynomial time algorithm for solving it optimally there are many good heuristics that all provide additive errors to optimal. The additive error in these algorithms usually depends linearly upon the largest encoding letter size. This paper was motivated by the problem of finding optimal codes when the encoding alphabet is infinite. Because the largest letter cost is infinite, the previous analyses could give infinite error bounds. We provide a new algorithm that works with infinite encoding alphabets. When restricted to the finite alphabet case, our algorithm often provides better error bounds than the best previous ones known.Comment: 29 pages;9 figures

    The three-body problem and the Hannay angle

    Full text link
    The Hannay angle has been previously studied for a celestial circular restricted three-body system by means of an adiabatic approach. In the present work, three main results are obtained. Firstly, a formal connection between perturbation theory and the Hamiltonian adiabatic approach shows that both lead to the Hannay angle; it is thus emphasised that this effect is already contained in classical celestial mechanics, although not yet defined nor evaluated separately. Secondly, a more general expression of the Hannay angle, valid for an action-dependent potential is given; such a generalised expression takes into account that the restricted three-body problem is a time-dependent, two degrees of freedom problem even when restricted to the circular motion of the test body. Consequently, (some of) the eccentricity terms cannot be neglected {\it a priori}. Thirdly, we present a new numerical estimate for the Earth adiabatically driven by Jupiter. We also point out errors in a previous derivation of the Hannay angle for the circular restricted three-body problem, with an action-independent potential.Comment: 11 pages. Accepted by Nonlinearit

    Dynamical fluctuations in classical adiabatic processes: General description and their implications

    Full text link
    Dynamical fluctuations in classical adiabatic processes are not considered by the conventional classical adiabatic theorem. In this work a general result is derived to describe the intrinsic dynamical fluctuations in classical adiabatic processes. Interesting implications of our general result are discussed via two subtopics, namely, an intriguing adiabatic geometric phase in a dynamical model with an adiabatically moving fixed-point solution, and the possible "pollution" to Hannay's angle or to other adiabatic phase objects for adiabatic processes involving non-fixed-point solutions.Comment: 19 pages, no figures, discussion significantly expanded, published versio
    corecore