804 research outputs found

    Family of Commuting Operators for the Totally Asymmetric Exclusion Process

    Full text link
    The algebraic structure underlying the totally asymmetric exclusion process is studied by using the Bethe Ansatz technique. From the properties of the algebra generated by the local jump operators, we explicitly construct the hierarchy of operators (called generalized hamiltonians) that commute with the Markov operator. The transfer matrix, which is the generating function of these operators, is shown to represent a discrete Markov process with long-range jumps. We give a general combinatorial formula for the connected hamiltonians obtained by taking the logarithm of the transfer matrix. This formula is proved using a symbolic calculation program for the first ten connected operators. Keywords: ASEP, Algebraic Bethe Ansatz. Pacs numbers: 02.30.Ik, 02.50.-r, 75.10.Pq.Comment: 26 pages, 1 figure; v2: published version with minor changes, revised title, 4 refs adde

    Spectral gap of the totally asymmetric exclusion process at arbitrary filling

    Full text link
    We calculate the spectral gap of the Markov matrix of the totally asymmetric simple exclusion process (TASEP) on a ring of L sites with N particles. Our derivation is simple and self-contained and extends a previous calculation that was valid only for half-filling. We use a special property of the Bethe equations for TASEP to reformulate them as a one-body problem. Our method is closely related to the one used to derive exact large deviation functions of the TASEP

    Derivation of a Matrix Product Representation for the Asymmetric Exclusion Process from Algebraic Bethe Ansatz

    Full text link
    We derive, using the algebraic Bethe Ansatz, a generalized Matrix Product Ansatz for the asymmetric exclusion process (ASEP) on a one-dimensional periodic lattice. In this Matrix Product Ansatz, the components of the eigenvectors of the ASEP Markov matrix can be expressed as traces of products of non-commuting operators. We derive the relations between the operators involved and show that they generate a quadratic algebra. Our construction provides explicit finite dimensional representations for the generators of this algebra.Comment: 16 page

    Time-Dependent Density Functional Theory for Driven Lattice Gas Systems with Interactions

    Full text link
    We present a new method to describe the kinetics of driven lattice gases with particle-particle interactions beyond hard-core exclusions. The method is based on the time-dependent density functional theory for lattice systems and allows one to set up closed evolution equations for mean site occupation numbers in a systematic manner. Application of the method to a totally asymmetric site exclusion process with nearest-neighbor interactions yields predictions for the current-density relation in the bulk, the phase diagram of non-equilibrium steady states and the time evolution of density profiles that are in good agreement with results from kinetic Monte Carlo simulations.Comment: 11 pages, 3 figure

    Asymmetric exclusion model with several kinds of impurities

    Get PDF
    We formulate a new integrable asymmetric exclusion process with N1=0,1,2,...N-1=0,1,2,... kinds of impurities and with hierarchically ordered dynamics. The model we proposed displays the full spectrum of the simple asymmetric exclusion model plus new levels. The first excited state belongs to these new levels and displays unusual scaling exponents. We conjecture that, while the simple asymmetric exclusion process without impurities belongs to the KPZ universality class with dynamical exponent 3/2, our model has a scaling exponent 3/2+N13/2+N-1. In order to check the conjecture, we solve numerically the Bethe equation with N=3 and N=4 for the totally asymmetric diffusion and found the dynamical exponents 7/2 and 9/2 in these cases.Comment: to appear in JSTA

    Distribution of exchange energy in a bond-alternating S=1 quantum spin chain

    Full text link
    The quasi-one-dimensional bond-alternating S=1 quantum antiferromagnet NTENP is studied by single crystal inelastic neutron scattering. Parameters of the measured dispersion relation for magnetic excitations are compared to existing numerical results and used to determine the magnitude of bond-strength alternation. The measured neutron scattering intensities are also analyzed using the 1st-moment sum rules for the magnetic dynamic structure factor, to directly determine the modulation of ground state exchange energies. These independently determined modulation parameters characterize the level of spin dimerization in NTENP. First-principle DMRG calculations are used to study the relation between these two quantities.Comment: 10 pages, 10 figure

    Power Spectra of a Constrained Totally Asymmetric Simple Exclusion Process

    Full text link
    To synthesize proteins in a cell, an mRNA has to work with a finite pool of ribosomes. When this constraint is included in the modeling by a totally asymmetric simple exclusion process (TASEP), non-trivial consequences emerge. Here, we consider its effects on the power spectrum of the total occupancy, through Monte Carlo simulations and analytical methods. New features, such as dramatic suppressions at low frequencies, are discovered. We formulate a theory based on a linearized Langevin equation with discrete space and time. The good agreement between its predictions and simulation results provides some insight into the effects of finite resoures on a TASEP.Comment: 4 pages, 2 figures v2: formatting change

    Algebraic Bethe Ansatz for the two species ASEP with different hopping rates

    Full text link
    An ASEP with two species of particles and different hopping rates is considered on a ring. Its integrability is proved and the Nested Algebraic Bethe Ansatz is used to derive the Bethe Equations for states with arbitrary numbers of particles of each type, generalizing the results of Derrida and Evans. We present also formulas for the total velocity of particles of a given type and their limit for large size of the system and finite densities of the particles.Comment: 14 page

    Incommensurability and edge states in the one-dimensional S=1 bilinear-biquadratic model

    Full text link
    Commensurate-incommensurate change on the one-dimensional S=1 bilinear-biquadratic model (H(α)=i{SiSi+1+α(SiSi+1)2}{\cal H}(\alpha)=\sum_i \{{\bf S}_i\cdot {\bf S}_{i+1} +\alpha ({\bf S}_i\cdot{\bf S}_{i+1})^2\}) is examined. The gapped Haldane phase has two subphases (the commensurate Haldane subphase and the incommensurate Haldane subphase) and the commensurate-incommensurate change point (the Affleck-Kennedy-Lieb-Tasaki point, α=1/3\alpha=1/3). There have been two different analytical predictions about the static structure factor in the neighborhood of this point. By using the S{\o}rensen-Affleck prescription, these static structure factors are related to the Green functions, and also to the energy gap behaviors. Numerical calculations support one of the predictions. Accordingly, the commensurate-incommensurate change is recognized as a motion of a pair of poles in the complex plane.Comment: 29 pages, 15 figure

    Bethe Ansatz calculation of the spectral gap of the asymmetric exclusion process

    Full text link
    We present a new derivation of the spectral gap of the totally asymmetric exclusion process on a half-filled ring of size L by using the Bethe Ansatz. We show that, in the large L limit, the Bethe equations reduce to a simple transcendental equation involving the polylogarithm, a classical special function. By solving that equation, the gap and the dynamical exponent are readily obtained. Our method can be extended to a system with an arbitrary density of particles. Keywords: ASEP, Bethe Ansatz, Dynamical Exponent, Spectral Gap
    corecore