99 research outputs found
Sparse square roots.
We show that it can be decided in polynomial time whether a graph of maximum degree 6 has a square root; if a square root exists, then our algorithm finds one with minimum number of edges. We also show that it is FPT to decide whether a connected n-vertex graph has a square root with at most n − 1 + k edges when this problem is parameterized by k. Finally, we give an exact exponential time algorithm for the problem of finding a square root with maximum number of edges
Backbone colorings for networks: tree and path backbones
We introduce and study backbone colorings, a variation on classical vertex colorings: Given a graph and a spanning subgraph of (the backbone of ), a backbone coloring for and is a proper vertex coloring of in which the colors assigned to adjacent vertices in differ by at least two. We study the cases where the backbone is either a spanning tree or a spanning path
Linear-time algorithms for scattering number and Hamilton-connectivity of interval graphs.
We prove that for all inline image an interval graph is inline image-Hamilton-connected if and only if its scattering number is at most k. This complements a previously known fact that an interval graph has a nonnegative scattering number if and only if it contains a Hamilton cycle, as well as a characterization of interval graphs with positive scattering numbers in terms of the minimum size of a path cover. We also give an inline image time algorithm for computing the scattering number of an interval graph with n vertices and m edges, which improves the previously best-known inline image time bound for solving this problem. As a consequence of our two results, the maximum k for which an interval graph is k-Hamilton-connected can be computed in inline image time
Parametrized Complexity of Weak Odd Domination Problems
Given a graph , a subset of vertices is a weak odd
dominated (WOD) set if there exists such that
every vertex in has an odd number of neighbours in . denotes
the size of the largest WOD set, and the size of the smallest
non-WOD set. The maximum of and , denoted
, plays a crucial role in quantum cryptography. In particular
deciding, given a graph and , whether is of
practical interest in the design of graph-based quantum secret sharing schemes.
The decision problems associated with the quantities , and
are known to be NP-Complete. In this paper, we consider the
approximation of these quantities and the parameterized complexity of the
corresponding problems. We mainly prove the fixed-parameter intractability
(W-hardness) of these problems. Regarding the approximation, we show that
, and admit a constant factor approximation
algorithm, and that and have no polynomial approximation
scheme unless P=NP.Comment: 16 pages, 5 figure
The Parameterized Complexity of Domination-type Problems and Application to Linear Codes
We study the parameterized complexity of domination-type problems.
(sigma,rho)-domination is a general and unifying framework introduced by Telle:
a set D of vertices of a graph G is (sigma,rho)-dominating if for any v in D,
|N(v)\cap D| in sigma and for any $v\notin D, |N(v)\cap D| in rho. We mainly
show that for any sigma and rho the problem of (sigma,rho)-domination is W[2]
when parameterized by the size of the dominating set. This general statement is
optimal in the sense that several particular instances of
(sigma,rho)-domination are W[2]-complete (e.g. Dominating Set). We also prove
that (sigma,rho)-domination is W[2] for the dual parameterization, i.e. when
parameterized by the size of the dominated set. We extend this result to a
class of domination-type problems which do not fall into the
(sigma,rho)-domination framework, including Connected Dominating Set. We also
consider problems of coding theory which are related to domination-type
problems with parity constraints. In particular, we prove that the problem of
the minimal distance of a linear code over Fq is W[2] for both standard and
dual parameterizations, and W[1]-hard for the dual parameterization.
To prove W[2]-membership of the domination-type problems we extend the
Turing-way to parameterized complexity by introducing a new kind of non
deterministic Turing machine with the ability to perform `blind' transitions,
i.e. transitions which do not depend on the content of the tapes. We prove that
the corresponding problem Short Blind Multi-Tape Non-Deterministic Turing
Machine is W[2]-complete. We believe that this new machine can be used to prove
W[2]-membership of other problems, not necessarily related to dominationComment: 19 pages, 2 figure
Parameterized Approximation Schemes using Graph Widths
Combining the techniques of approximation algorithms and parameterized
complexity has long been considered a promising research area, but relatively
few results are currently known. In this paper we study the parameterized
approximability of a number of problems which are known to be hard to solve
exactly when parameterized by treewidth or clique-width. Our main contribution
is to present a natural randomized rounding technique that extends well-known
ideas and can be used for both of these widths. Applying this very generic
technique we obtain approximation schemes for a number of problems, evading
both polynomial-time inapproximability and parameterized intractability bounds
List coloring in the absence of a linear forest.
The k-Coloring problem is to decide whether a graph can be colored with at most k colors such that no two adjacent vertices receive the same color. The Listk-Coloring problem requires in addition that every vertex u must receive a color from some given set L(u)⊆{1,…,k}. Let Pn denote the path on n vertices, and G+H and rH the disjoint union of two graphs G and H and r copies of H, respectively. For any two fixed integers k and r, we show that Listk-Coloring can be solved in polynomial time for graphs with no induced rP1+P5, hereby extending the result of Hoàng, Kamiński, Lozin, Sawada and Shu for graphs with no induced P5. Our result is tight; we prove that for any graph H that is a supergraph of P1+P5 with at least 5 edges, already List 5-Coloring is NP-complete for graphs with no induced H
Induced disjoint paths in circular-arc graphs in linear time
The Induced Disjoint Paths problem is to test whether an graph G on n vertices with k distinct pairs of vertices (si,ti) contains paths P1,…,Pk such that Pi connects si and ti for i=1,…,k, and Pi and Pj have neither common vertices nor adjacent vertices (except perhaps their ends) for 1≤
- …
