511 research outputs found

    AMS measurements of cosmogenic and supernova-ejected radionuclides in deep-sea sediment cores

    Full text link
    Samples of two deep-sea sediment cores from the Indian Ocean are analyzed with accelerator mass spectrometry (AMS) to search for traces of recent supernova activity around 2 Myr ago. Here, long-lived radionuclides, which are synthesized in massive stars and ejected in supernova explosions, namely 26Al, 53Mn and 60Fe, are extracted from the sediment samples. The cosmogenic isotope 10Be, which is mainly produced in the Earths atmosphere, is analyzed for dating purposes of the marine sediment cores. The first AMS measurement results for 10Be and 26Al are presented, which represent for the first time a detailed study in the time period of 1.7-3.1 Myr with high time resolution. Our first results do not support a significant extraterrestrial signal of 26Al above terrestrial background. However, there is evidence that, like 10Be, 26Al might be a valuable isotope for dating of deep-sea sediment cores for the past few million years.Comment: 5 pages, 2 figures, Proceedings of the Heavy Ion Accelerator Symposium on Fundamental and Applied Science, 2013, will be published by the EPJ Web of conference

    Influence of tunneling on electron screening in low energy nuclear reactions in laboratories

    Get PDF
    Using a semiclassical mean field theory, we show that the screening potential exhibits a characteristic radial variation in the tunneling region in sharp contrast to the assumption of the constant shift in all previous works. Also, we show that the explicit treatment of the tunneling region gives a larger screening energy than that in the conventional approach, which studies the time evolution only in the classical region and estimates the screening energy from the screening potential at the external classical turning point. This modification becomes important if the electronic state is not a single adiabatic state at the external turning point either by pre-tunneling transitions of the electronic state or by the symmetry of the system even if there is no essential change with the electronic state in the tunneling region.Comment: 3 figure

    Energy Loss, Electron Screening, and the Astrophysical 3He(d,p)4He cross section

    Get PDF
    We reanalyze the low-energy 3He(d,p)4He cross section measurements of Engstler et al. using recently measured energy loss data for proton and deuteron beams in a helium gas. Although the new 3He(d,p)4He S-factors are significantly lower than those reported by Engstler et al. they clearly show the presence of electron screening effects. From the new S-factors we find an electron screening energy in agreement with the adiabatic limit.Comment: 8 Page RevTeX document, two postscript figures, now in a self-extracting uufile type archiv

    Nuclear data from AMS & nuclear data for AMS - some examples

    Get PDF
    We summarize some recent cross-section measurements using accelerator mass spectrometry (AMS). AMS represents an ultra-sensitive technique for measuring a limited, but steadily increasing number of longer-lived radionuclides. This method implies a two-step procedure with sample activation and subsequent AMS measurement. Applications include nuclear astrophysics, nuclear technology (nuclear fusion, nuclear fission and advanced reactor concepts and radiation dose estimations). A series of additional applications involves cosmogenic radionuclides in environmental, geological and extraterrestrial studies. Lack of information exists for a list of nuclides as pointed out by nuclear data requests. An overview of some recent measurements is given and the method is exemplified for some specific neutron-induced reactions.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Deciphering the genome structure and paleohistory of _Theobroma cacao_

    Get PDF
    We sequenced and assembled the genome of _Theobroma cacao_, an economically important tropical fruit tree crop that is the source of chocolate. The assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of them anchored on the 10 _T. cacao_ chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example flavonoid-related genes. It also provides a major source of candidate genes for _T. cacao_ disease resistance and quality improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten _T. cacao_ chromosomes were shaped from an ancestor through eleven chromosome fusions. The _T. cacao_ genome can be considered as a simple living relic of higher plant evolution
    corecore