955 research outputs found

    Innovating a classic course in concrete structures

    Get PDF

    Per Goltermann: Concrete Structures - betonkonstruktioner. Design af konstruktionsdele. Oktober 2017

    Get PDF

    Finite element simulation and testing of ISW CFRP anchorage

    Get PDF
    Several Carbon Fibre Reinforced Polymers (CFRP) systems have been used successfully for strengthening of structures during the last decades. However, the fracture often occurs in the concrete adherent or in the adhesive interface when used for steel strengthening. As a consequence the CFRP is poorly utilized with a non ductile and brittle failure mode as the outcome. Mechanical anchorage can be used to utilize the full capacity of the CFRP materials but cannot yet challenge systems used for steel. Such systems can be used to transfer stresses from the CFRP material efficiently to the remaining structure. However, reaching the full capacity of the CFRP material is difficult since anchoring often courses premature failure modes such as crushing of the Fibre Reinforced Polymers (FRP), slip in the FRP and adjacent adherent, cutting of the fibres, bending of fibres and frontal overload. This paper presents a novel mechanical integrated sleeve wedge anchorage which seem very promising when perusing the scope of ultimate utilization of CFRP 8mm rods (with a tension capacity of approximately 140kN). Compression transverse to the CFRP is evaluated to prevent premature failure. The anchorage is modelled in the 3D finite Element program ABAQUS, just as digital image correlation (DIC) testing was performed to verify the finite element simulation. Also a new optimized design was produced to ensure that the finite element simulation and anchorage behaviour correlated well. It is seen that the simulation and DIC testing correspond well when strains on the barrel surface are compared. As a consequence it was possible to produce a new optimized anchorage which utilized the full capacity of the 8mm CFRP rod

    External post-tensioning of cfrp tendons using integrated sleeve-wedge anchorage

    Get PDF
    Strengthening of structures using external post-tension CFRP systems have proven to be anefficient method as such system increases the structural capacity and reduces cracks and deflection. Sufficient anchorage is of significant importance since the anchorage provides the connection between the post-tensioning system and the remaining structure. A special designed integrated sleeve-wedge anchorage has therefore been designed to improve thereliability of the mounting procedure, reduce the possible modes of failure and thus provide desired anchorage. The present research shows that adequate anchorage was obtained using the novel anchorage and that its behaviour is stable and predicatble when short term static load is applied. Desired strengthening was also observed in external post-tensioning on reinforced concrete T-beams. The requirements and definitions on a stable anchorage of CFRP tendons however still need to be investigated further

    Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    Get PDF
    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antiobiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and overexpression sensitize and promote short-term tolerance, respectively, to this drug class. Here we show that chaperonin GroEL/GroES over-expression accelerates acquisition of aminoglycoside resistance and multi-drug resistance following sub-lethal aminoglycoside antibiotic exposure. Chaperonin buffering could provide a novel mechanism for antibiotic resistance and multi-drug resistance development
    corecore