1,008 research outputs found
Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. I. The One-Dimensional Case
We give an algorithm for testing the extremality of minimal valid functions
for Gomory and Johnson's infinite group problem that are piecewise linear
(possibly discontinuous) with rational breakpoints. This is the first set of
necessary and sufficient conditions that can be tested algorithmically for
deciding extremality in this important class of minimal valid functions. We
also present an extreme function that is a piecewise linear function with some
irrational breakpoints, whose extremality follows from a new principle.Comment: 38 pages, 10 figure
On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem
We investigate three competing notions that generalize the notion of a facet
of finite-dimensional polyhedra to the infinite-dimensional Gomory-Johnson
model. These notions were known to coincide for continuous piecewise linear
functions with rational breakpoints. We show that two of the notions, extreme
functions and facets, coincide for the case of continuous piecewise linear
functions, removing the hypothesis regarding rational breakpoints. We then
separate the three notions using discontinuous examples.Comment: 18 pages, 2 figure
Panel discussion: inherent conflict in international trade
Economic development ; International trade
Software for cut-generating functions in the Gomory--Johnson model and beyond
We present software for investigations with cut generating functions in the
Gomory-Johnson model and extensions, implemented in the computer algebra system
SageMath.Comment: 8 pages, 3 figures; to appear in Proc. International Congress on
Mathematical Software 201
The structure of the infinite models in integer programming
The infinite models in integer programming can be described as the convex
hull of some points or as the intersection of halfspaces derived from valid
functions. In this paper we study the relationships between these two
descriptions. Our results have implications for corner polyhedra. One
consequence is that nonnegative, continuous valid functions suffice to describe
corner polyhedra (with or without rational data)
The Dynamics of Metropolitan Housing Prices
This article is the winner of the Innovative Thinking ‘‘Thinking Out of the Box’’ manuscript prize (sponsored by the Homer Hoyt Advanced Studies Institute) presented at the 2001 American Real Estate Society Annual Meeting. This study examines the dynamics of real housing price appreciation in 130 metropolitan areas across the United States. The study finds that real housing price appreciation is strongly influenced by the growth of population and real changes in income, construction costs and interest rates. The study also finds that stock market appreciation imparts a strong current and lagged wealth effect on housing prices. Housing appreciation rates also are found to vary across areas because of location-specific fixed-effects; these fixed effects represent the residuals of housing price appreciation attributable to location. The magnitudes of the fixed-effects in particular cities are positively correlated with restrictive growth management policies and limitations on land availability.
Designing Multi-Commodity Flow Trees
The traditional multi-commodity flow problem assumes a given flow network in
which multiple commodities are to be maximally routed in response to given
demands. This paper considers the multi-commodity flow network-design problem:
given a set of multi-commodity flow demands, find a network subject to certain
constraints such that the commodities can be maximally routed.
This paper focuses on the case when the network is required to be a tree. The
main result is an approximation algorithm for the case when the tree is
required to be of constant degree. The algorithm reduces the problem to the
minimum-weight balanced-separator problem; the performance guarantee of the
algorithm is within a factor of 4 of the performance guarantee of the
balanced-separator procedure. If Leighton and Rao's balanced-separator
procedure is used, the performance guarantee is O(log n). This improves the
O(log^2 n) approximation factor that is trivial to obtain by a direct
application of the balanced-separator method.Comment: Conference version in WADS'9
Hierarchies of Predominantly Connected Communities
We consider communities whose vertices are predominantly connected, i.e., the
vertices in each community are stronger connected to other community members of
the same community than to vertices outside the community. Flake et al.
introduced a hierarchical clustering algorithm that finds such predominantly
connected communities of different coarseness depending on an input parameter.
We present a simple and efficient method for constructing a clustering
hierarchy according to Flake et al. that supersedes the necessity of choosing
feasible parameter values and guarantees the completeness of the resulting
hierarchy, i.e., the hierarchy contains all clusterings that can be constructed
by the original algorithm for any parameter value. However, predominantly
connected communities are not organized in a single hierarchy. Thus, we develop
a framework that, after precomputing at most maximum flows, admits a
linear time construction of a clustering \C(S) of predominantly connected
communities that contains a given community and is maximum in the sense
that any further clustering of predominantly connected communities that also
contains is hierarchically nested in \C(S). We further generalize this
construction yielding a clustering with similar properties for given
communities in time. This admits the analysis of a network's structure
with respect to various communities in different hierarchies.Comment: to appear (WADS 2013
Approximation of corner polyhedra with families of intersection cuts
We study the problem of approximating the corner polyhedron using
intersection cuts derived from families of lattice-free sets in .
In particular, we look at the problem of characterizing families that
approximate the corner polyhedron up to a constant factor, which depends only
on and not the data or dimension of the corner polyhedron. The literature
already contains several results in this direction. In this paper, we use the
maximum number of facets of lattice-free sets in a family as a measure of its
complexity and precisely characterize the level of complexity of a family
required for constant factor approximations. As one of the main results, we
show that, for each natural number , a corner polyhedron with basic
integer variables and an arbitrary number of continuous non-basic variables is
approximated up to a constant factor by intersection cuts from lattice-free
sets with at most facets if and that no such approximation is
possible if . When the approximation factor is allowed to
depend on the denominator of the fractional vertex of the linear relaxation of
the corner polyhedron, we show that the threshold is versus .
The tools introduced for proving such results are of independent interest for
studying intersection cuts
- …
