1,008 research outputs found

    Equivariant Perturbation in Gomory and Johnson's Infinite Group Problem. I. The One-Dimensional Case

    Full text link
    We give an algorithm for testing the extremality of minimal valid functions for Gomory and Johnson's infinite group problem that are piecewise linear (possibly discontinuous) with rational breakpoints. This is the first set of necessary and sufficient conditions that can be tested algorithmically for deciding extremality in this important class of minimal valid functions. We also present an extreme function that is a piecewise linear function with some irrational breakpoints, whose extremality follows from a new principle.Comment: 38 pages, 10 figure

    On the notions of facets, weak facets, and extreme functions of the Gomory-Johnson infinite group problem

    Full text link
    We investigate three competing notions that generalize the notion of a facet of finite-dimensional polyhedra to the infinite-dimensional Gomory-Johnson model. These notions were known to coincide for continuous piecewise linear functions with rational breakpoints. We show that two of the notions, extreme functions and facets, coincide for the case of continuous piecewise linear functions, removing the hypothesis regarding rational breakpoints. We then separate the three notions using discontinuous examples.Comment: 18 pages, 2 figure

    Panel discussion: inherent conflict in international trade

    Get PDF
    Economic development ; International trade

    Software for cut-generating functions in the Gomory--Johnson model and beyond

    Full text link
    We present software for investigations with cut generating functions in the Gomory-Johnson model and extensions, implemented in the computer algebra system SageMath.Comment: 8 pages, 3 figures; to appear in Proc. International Congress on Mathematical Software 201

    The structure of the infinite models in integer programming

    Get PDF
    The infinite models in integer programming can be described as the convex hull of some points or as the intersection of halfspaces derived from valid functions. In this paper we study the relationships between these two descriptions. Our results have implications for corner polyhedra. One consequence is that nonnegative, continuous valid functions suffice to describe corner polyhedra (with or without rational data)

    The Dynamics of Metropolitan Housing Prices

    Get PDF
    This article is the winner of the Innovative Thinking ‘‘Thinking Out of the Box’’ manuscript prize (sponsored by the Homer Hoyt Advanced Studies Institute) presented at the 2001 American Real Estate Society Annual Meeting. This study examines the dynamics of real housing price appreciation in 130 metropolitan areas across the United States. The study finds that real housing price appreciation is strongly influenced by the growth of population and real changes in income, construction costs and interest rates. The study also finds that stock market appreciation imparts a strong current and lagged wealth effect on housing prices. Housing appreciation rates also are found to vary across areas because of location-specific fixed-effects; these fixed effects represent the residuals of housing price appreciation attributable to location. The magnitudes of the fixed-effects in particular cities are positively correlated with restrictive growth management policies and limitations on land availability.

    Designing Multi-Commodity Flow Trees

    Full text link
    The traditional multi-commodity flow problem assumes a given flow network in which multiple commodities are to be maximally routed in response to given demands. This paper considers the multi-commodity flow network-design problem: given a set of multi-commodity flow demands, find a network subject to certain constraints such that the commodities can be maximally routed. This paper focuses on the case when the network is required to be a tree. The main result is an approximation algorithm for the case when the tree is required to be of constant degree. The algorithm reduces the problem to the minimum-weight balanced-separator problem; the performance guarantee of the algorithm is within a factor of 4 of the performance guarantee of the balanced-separator procedure. If Leighton and Rao's balanced-separator procedure is used, the performance guarantee is O(log n). This improves the O(log^2 n) approximation factor that is trivial to obtain by a direct application of the balanced-separator method.Comment: Conference version in WADS'9

    Hierarchies of Predominantly Connected Communities

    Full text link
    We consider communities whose vertices are predominantly connected, i.e., the vertices in each community are stronger connected to other community members of the same community than to vertices outside the community. Flake et al. introduced a hierarchical clustering algorithm that finds such predominantly connected communities of different coarseness depending on an input parameter. We present a simple and efficient method for constructing a clustering hierarchy according to Flake et al. that supersedes the necessity of choosing feasible parameter values and guarantees the completeness of the resulting hierarchy, i.e., the hierarchy contains all clusterings that can be constructed by the original algorithm for any parameter value. However, predominantly connected communities are not organized in a single hierarchy. Thus, we develop a framework that, after precomputing at most 2(n1)2(n-1) maximum flows, admits a linear time construction of a clustering \C(S) of predominantly connected communities that contains a given community SS and is maximum in the sense that any further clustering of predominantly connected communities that also contains SS is hierarchically nested in \C(S). We further generalize this construction yielding a clustering with similar properties for kk given communities in O(kn)O(kn) time. This admits the analysis of a network's structure with respect to various communities in different hierarchies.Comment: to appear (WADS 2013

    Approximation of corner polyhedra with families of intersection cuts

    Full text link
    We study the problem of approximating the corner polyhedron using intersection cuts derived from families of lattice-free sets in Rn\mathbb{R}^n. In particular, we look at the problem of characterizing families that approximate the corner polyhedron up to a constant factor, which depends only on nn and not the data or dimension of the corner polyhedron. The literature already contains several results in this direction. In this paper, we use the maximum number of facets of lattice-free sets in a family as a measure of its complexity and precisely characterize the level of complexity of a family required for constant factor approximations. As one of the main results, we show that, for each natural number nn, a corner polyhedron with nn basic integer variables and an arbitrary number of continuous non-basic variables is approximated up to a constant factor by intersection cuts from lattice-free sets with at most ii facets if i>2n1i> 2^{n-1} and that no such approximation is possible if i2n1i \leq 2^{n-1}. When the approximation factor is allowed to depend on the denominator of the fractional vertex of the linear relaxation of the corner polyhedron, we show that the threshold is i>ni > n versus ini \leq n. The tools introduced for proving such results are of independent interest for studying intersection cuts
    corecore