34 research outputs found
Improved Particle Swarm Optimization for Selection of Shield Tunneling Parameter Values
This article proposes an exponential adjustment inertia weight immune particle swarm optimization (EAIW-IPSO) to enhance the accuracy and reliability regarding the selection of shield tunneling parameter values. According to the iteration changes and the range of inertia weight in particle swarm optimization algorithm (PSO), the inertia weight is adjusted by the form of exponential function. Meanwhile, the self-regulation mechanism of the immune system is combined with the PSO. 12 benchmark functions and the realistic cases of shield tunneling parameter value selection are utilized to demonstrate the feasibility and accuracy of the proposed EAIW-IPSO algorithm. Comparison with other improved PSO indicates that EAIW-IPSO has better performance to solve unimodal and multimodal optimization problems. When solving the selection of shield tunneling parameter values, EAIW-IPSO can provide more accurate and reliable references for the realistic engineering
Experimental study on unloading creep of sandstone under temperature-seepage coupling conditions
Environmental factors (such as temperature and water) and their coupling effects will change the unloading creep properties of surrounding rock after tunnel excavation, threatening the stability of surrounding rock and the safety maintenance of construction sites. To analyze the effects of temperature, seepage flow, and their coupling on the creep characteristics of sandstone unloading, the triaxial unloading creep test was carried out on the sandstone specimen (φ50 mm×100 mm) by using the self-designed temperature control system and the improved pore water conduction specimen sealing device. The results show that during the creep time of 300 min after unloading the confining stress, the axial compression and radial expansion creep speed increase gradually and then slow down. The strain is mainly radial creep. The decrease in temperature leads to the increase in axial creep deformation and the decrease in radial creep deformation of the dry and saturated specimens. With the increase in seepage water pressure, the axial strain reduces, and the seepage water pressure suppresses the axial creep deformation, while the radial strain increases significantly, and the expansion phenomenon is obvious. Seepage water pressure promotes radial creep deformation. With the increase of seepage water pressure, the axial unloading creep rate decreases and the radial unloading creep rate increases. Under the coupling effect of temperature and seepage, the creep rate curve of unloading is divided into the attenuation stage and the stable stage, and the deformation in the attenuation stage is dominant. The radial creep rate is higher than the axial creep rate, and the fluctuation amplitude of the radial creep rate is small, which reaches stability fast. This study can provide scientific information for the stability evaluation of surrounding rock in deep underground engineering
Study on the breakdown characteristics of multiple-reignition secondary arcs on EHV/UHV transmission lines
A long-gap AC arc with a length of more than ten meters (secondary arc) are normally generated at the short-circuit arc channel after a single-phase-to-ground fault. In previous studies, arc breakdowns of secondary arcs have mainly been considered as electrical breakdowns, ignoring the role of heat in the arc channel. Besides, the extinction-reignition theory of secondary arc, i.e., dielectric strength recovery theory, still lack the support of experimental data. In this study, based on the equivalent experiments performed in the laboratory, the influences of compensation degree of transmission lines, initial recovery voltage gradient of air gap, test current, wind speed, and wind direction on the breakdown characteristics of secondary arcs are studied and statistically analyzed. The laws of the transient recovery voltage (TRV) and of the rate of rise of recovery voltage (RRRV) also studied by considering the influencing factors mentioned above. The results of this study will provide a more complete experimental basis for the theory of extinction–reignition of secondary arcs and a deeper understanding of the transient characteristics of arc breakdow
The Field Monitoring Experiment of the Roof Strata Movement in Coal Mining Based on DFOS
Mining deformation of roof strata is the main cause of methane explosion, water inrush, and roof collapse accidents amid underground coal mining. To ensure the safety of coal mining, the distributed optical fiber sensor (DFOS) technology has been applied in the 150,313 working face by Yinying Coal Mine in Shanxi Province, north China to monitor the roof strata movement, so as to grasp the movement law of roof strata and make it serve for production. The optical fibers are laid out in the holes drilled through the overlying strata on the roadway roof and BOTDR technique is utilized to carry out the on-site monitoring. Prior to the on-site test, the coupling test of the fiber strain in the concrete anchorage, the calibration test of the fiber strain coefficient of the 5-mm steel strand (SS) fiber, and the test of the strain transfer performance of the SS fiber were carried out in the laboratory. The approaches for fiber laying-out in the holes and fiber’s spatial positioning underground the coal mine have been optimized in the field. The indoor test results show that the high-strength SS optical fiber has a high strain transfer performance, which can be coupled with the concrete anchor with uniform deformation. This demonstrated the feasibility of SS fiber for monitoring strata movement theoretically and experimentally; and the law of roof strata fracturing and collapse is obtained from the field test results. This paper is a trial to study the whole process of dynamic movement of the deformation of roof strata. Eventually the study results will help Yinying Coal Mine to optimize mining design, prevent coal mine accidents, and provide detailed test basis for DFOS monitoring technique of roof strata movement.</jats:p
The Field Monitoring Experiment of the Roof Strata Movement in Coal Mining Based on DFOS
Mining deformation of roof strata is the main cause of methane explosion, water inrush, and roof collapse accidents amid underground coal mining. To ensure the safety of coal mining, the distributed optical fiber sensor (DFOS) technology has been applied in the 150,313 working face by Yinying Coal Mine in Shanxi Province, north China to monitor the roof strata movement, so as to grasp the movement law of roof strata and make it serve for production. The optical fibers are laid out in the holes drilled through the overlying strata on the roadway roof and BOTDR technique is utilized to carry out the on-site monitoring. Prior to the on-site test, the coupling test of the fiber strain in the concrete anchorage, the calibration test of the fiber strain coefficient of the 5-mm steel strand (SS) fiber, and the test of the strain transfer performance of the SS fiber were carried out in the laboratory. The approaches for fiber laying-out in the holes and fiber’s spatial positioning underground the coal mine have been optimized in the field. The indoor test results show that the high-strength SS optical fiber has a high strain transfer performance, which can be coupled with the concrete anchor with uniform deformation. This demonstrated the feasibility of SS fiber for monitoring strata movement theoretically and experimentally; and the law of roof strata fracturing and collapse is obtained from the field test results. This paper is a trial to study the whole process of dynamic movement of the deformation of roof strata. Eventually the study results will help Yinying Coal Mine to optimize mining design, prevent coal mine accidents, and provide detailed test basis for DFOS monitoring technique of roof strata movement
