10,561 research outputs found
Identifying Very Metal-Rich Stars with Low-Resolution Spectra: Finding Planet-Search Targets
We present empirical calibrations that estimate stellar metallicity,
effective temperature and surface gravity as a function of Lick/IDS indices.
These calibrations have been derived from a training set of 261 stars for which
(1) high-precision measurements of [Fe/H], T_eff and log g have been made using
spectral-synthesis analysis of HIRES spectra, and (2) Lick indices have also
been measured. Our [Fe/H] calibration, which has precision 0.07 dex, has
identified a number of bright (V < 9) metal-rich stars which are now being
screened for hot Jupiter-type planets. Using the Yonsei-Yale stellar models, we
show that the calibrations provide distance estimates accurate to 20% for
nearby stars.
This paper outlines the second tier of the screening of planet-search targets
by the N2K Consortium, a project designed to identify the stars most likely to
harbor extrasolar planets. Discoveries by the N2K Consortium include the
transiting hot Saturn HD 149026 b (Sato et al. 2005, astro-ph/0507009) and HD
88133 b (Fischer et al. 2005). See Ammons et al. (2005, In Press) for a
description of the first tier of N2K metallicity screening, calibrations using
broadband photometry.Comment: Accepted for publication in the Astrophysical Journa
Thermal Emission from HII Galaxies: Discovering the Youngest Systems
We studied the radio properties of very young massive regions of star
formation in HII galaxies, with the aim of detecting episodes of recent star
formation in an early phase of evolution where the first supernovae start to
appear. Our sample consists of 31 HII galaxies, characterized by strong
Hydrogen emission lines, for which low resolution VLA 3.5cm and 6cm
observations were obtained. The radio spectral energy distribution has a range
of behaviours; 1) there are galaxies where the SED is characterized by a
synchrotron-type slope, 2) galaxies with a thermal slope, and, 3) galaxies with
possible free-free absorption at long wavelengths. The latter SEDs were found
in a few galaxies and represent a signature of heavily embedded massive star
clusters closely related to the early stages of massive star formation. Based
on the comparison of the star formation rates determined from the recombination
lines and those determined from the radio emission we find that SFR(Ha) is on
average five times higher than SFR(1.4GHz). We confirm this tendency by
comparing the ratio between the observed flux at 20 cm and the expected one,
calculated based on the Ha star formation rates, both for the galaxies in our
sample and for normal ones. This analysis shows that this ratio is a factor of
2 smaller in our galaxies than in normal ones, indicating that they fall below
the FIR/radio correlation. These results suggest that the emission of these
galaxies is dominated by a recent and massive star formation event in which the
first supernovae (SN) just started to explode. We conclude that the systematic
lack of synchrotron emission in those systems with the largest equivalent width
of Hb can only be explained if those are young starbursts of less than 3.5Myr
of age.Comment: Accepted for publication in Ap
Detailed modelling of a large sample of Herschel sources in the Lockman Hole: identification of cold dust and of lensing candidates through their anomalous SEDs
We have studied in detail a sample of 967 SPIRE sources with 5σ detections at 350 and 500 μm and associations with Spitzer-SWIRE 24 μm galaxies in the HerMES-Lockman survey area, fitting theirmid- and far-infrared, and submillimetre, spectral energy distributions (SEDs) in an automatic search with a set of six infrared templates. For almost 300 galaxies,we havemodelled their SEDs individually to ensure the physicality of the fits. We confirm the need for the new cool and cold cirrus templates, and also of the young starburst template, introduced in earlier work. We also identify 109 lensing candidates via their anomalous SEDs and provide a set of colour–redshift constraints which allow lensing candidates to be identified from combined Herschel and Spitzer data. The picture that emerges of the submillimetre galaxy population is complex, comprising ultraluminous and hyperluminous starbursts, lower luminosity galaxies dominated by interstellar dust emission, lensed galaxies and galaxies with surprisingly cold (10–13 K) dust. 11 per cent of 500 μm selected sources are lensing candidates. 70 per cent of the unlensed sources are ultraluminous infrared galaxies and 26 per cent are hyperluminous. 34 per cent are dominated by optically thin interstellar dust (‘cirrus’) emission, but most of these are due to cooler dust than is characteristic of our Galaxy. At the highest infrared luminosities we see SEDs dominated by M82, Arp 220 and young starburst types, in roughly equal proportions
Acid Polishing of Lead Crystal Glass
The industrial partner manufactures high quality lead crystal glassware. The cutting of decorative features in the glass damages the surface and the cuts are optically opaque; to restore transparency, the glass is polished in a solution of hydrofluoric (HF) and sulphuric acid (H2 SO4 .) The polishing process comprises three stages:
1. immersion in a polishing tank containing acid;
2. rinsing in a tank containing water; and
3. settlement of the solid reaction products in a settlement tank.
The manufacturer hopes to optimise its polishing process to
• minimise the health/environmental impact of the process;
• maximise throughput;
• maintain the sharpness of the cut edges while still polishing to an acceptable level of transparency.
The study group was asked to focus on modelling three aspects of the process:
• the chemical reactions involved in the etching at the glass-acid solution interface;
• the removal of reaction products in the settlement tank;
• flow within the polishing tank
Searching for the signatures of terrestial planets in solar analogs
We present a fully differential chemical abundance analysis using very
high-resolution (R >~ 85,000) and very high signal-to-noise (S/N~800 on
average) HARPS and UVES spectra of 7 solar twins and 95 solar analogs, 24 are
planet hosts and 71 are stars without detected planets. The whole sample of
solar analogs provide very accurate Galactic chemical evolution trends in the
metalliciy range -0.3<[Fe/H]<0.5. Solar twins with and without planets show
similar mean abundance ratios. We have also analysed a sub-sample of 28 solar
analogs, 14 planet hosts and 14 stars without known planets, with spectra at
S/N~850 on average, in the metallicity range 0.14<[Fe/H]<0.36 and find the same
abundance pattern for both samples of stars with and without planets. This
result does not depend on either the planet mass, from 7 Earth masses to 17.4
Jupiter masses, or the orbital period of the planets, from 3 to 4300 days. In
addition, we have derived the slope of the abundance ratios as a function of
the condensation temperature for each star and again find similar distributions
of the slopes for both stars with and without planets. In particular, the peaks
of these two distributions are placed at a similar value but with opposite sign
as that expected from a possible signature of terrestial planets. In
particular, two of the planetary systems in this sample, containing each of
them a Super-Earth like planet, show slope values very close to these peaks
which may suggest that these abundance patterns are not related to the presence
of terrestial planets.Comment: Accepted for publication in The Astrophysical Journa
Seasonal and spatial variability in plankton production and respiration in the Subtropical Gyres of the Atlantic Ocean
Euphotic zone plankton production (P) and respiration (R) were determined from the in vitro flux of dissolved oxygen during six latitudinal transects of the Atlantic Ocean, as part of the Atlantic Meridional Transect (AMT) programme. The transects traversed the North and South Atlantic Subtropical Gyres (N gyre, 18–38°N; S gyre, 11–35°S) in April–June and September–November 2003–2005. The route and timing of the cruises enabled the assessment of the seasonal variability of P, R and P/R in the N and S gyres, and the comparison of the previously unsampled N gyre centre with the more frequently sampled eastern edge of the gyre. Mean euphotic zone integrated rates (±SE) were P=63±23 (n=31), R=69±22 (n=30) mmol O2 m-2 d-1 in the N gyre; and P=58±26 (n=30), R=62±24 (n=30) mmol O2 m-2 d-1 in the S gyre. Overall, the N gyre was heterotrophic (R>P) and it was more heterotrophic than the S gyre, but the metabolic balance of both gyres changed with season. Both gyres were net heterotrophic in autumn, and balanced in spring. This seasonal contrast was most pronounced for the S gyre, because it was more autotrophic than the N gyre during spring. This may have arisen from differences in nitrate availability, because spring sampling in the S gyre coincided with periods of deep mixing to the nitracline, more frequently than spring sampling within the N gyre. Our results indicate that the N gyre is less heterotrophic than previous estimates suggested, and that there is an apparent decrease in R from the eastern edge to the centre of the N gyre, possibly indicative of an allochthonous organic carbon source to the east of the gyre
Structural, optical and electrostatic properties of single and fewlayers MoS2:effect of substrate
We have decoupled the intrinsic electrostatic effects arising in monolayer and few-layer MoS2 from those influenced by the flake-substrate interaction. Using ultrasonic force microscopy nanomechanical mapping, we identify the change from supported to suspended flake regions on a trenched substrate. These regions are correlated with the surface potential as measured by scanning Kelvin probe microscopy. Relative to the supported region, we observe an increase in surface potential contrast due to suppressed charge transfer for the suspended monolayer. Using Raman spectroscopy we observe a red shift of the E12g mode for monolayer MoS2 deposited on Si, consistent with a more strained MoS2 on the Si substrate compared to the Au substrate
The Broad-Line and Narrow-Line Regions of the LINER NGC 4579
We report the discovery of an extremely broad H-alpha emission line in the
LINER nucleus of NGC 4579. From ground-based observations, the galaxy was
previously known to contain a Type 1 nucleus with a broad H-alpha line of FWHM
= 2300 km/s and FWZI ~ 5000 km/s. New spectra obtained with the Hubble Space
Telescope and a 0.2 arcsec-wide slit reveal an H-alpha component with FWZI ~
18,000 km/s. The line is not obviously double-peaked, but it does possess
shoulders on the red and blue sides which resemble the H-alpha profiles of
double-peaked emitters such as NGC 4203 and NGC 4450. This similarity suggests
that the very broad H-alpha profile in NGC 4579 may represent emission from an
accretion disk. Three such objects have been found recently in two HST programs
which have targeted a total of 30 galaxies, demonstrating that double-peaked or
extremely broad-line emission in LINERs must be much more common than would be
inferred from ground-based surveys. The ratio of the narrow [S II] 6716, 6731
lines shows a pronounced gradient indicating a steep rise in density toward the
nucleus. The direct detection of a density gradient within the inner arcsecond
of the narrow-line region confirms expectations from previous observations of
linewidth-critical density correlations in several LINERs.Comment: 8 pages, includes 3 figures. To appear in The Astrophysical Journa
Revised SWIRE photometric redshifts
We have revised the Spitzer Wide-Area Infrared Extragalactic survey (SWIRE) Photometric
Redshift Catalogue to take account of new optical photometry in several of the SWIRE areas,
and incorporating Two Micron All Sky Survey (2MASS) and UKIRT Infrared Deep Sky
Survey (UKIDSS) near-infrared data. Aperture matching is an important issue for combining
near-infrared and optical data, and we have explored a number of methods of doing this.
The increased number of photometric bands available for the redshift solution results in
improvements both in the rms error and, especially, in the outlier rate.
We have also found that incorporating the dust torus emission into the quasi-stellar object
(QSO) templates improves the performance for QSO redshift estimation. Our revised redshift
catalogue contains over 1 million extragalactic objects, of which 26 288 are QSOs.Web of Scienc
Angular clustering of galaxies at 3.6 microns from the Spitzer Wide-area Infrared Extragalactic (SWIRE) Survey
We present the first analysis of large-scale clustering from the Spitzer Wide-area Infrared Extragalactic legacy survey (SWIRE). We compute the angular correlation function of galaxies selected to have 3.6 m fluxes brighter than 32 Jy in three fields totaling 2 deg2 in area. In each field we detect clustering with a high level of significance. The amplitude and slope of the correlation function is consistent between the three fields and is modeled as w() ¼ A1 with A ¼ (0:6 0:3) ; 10 3; ¼ 2:03 0:10. With a fixed slope of ¼ 1:8, we obtain an amplitude of A ¼ (1:7 0:1) ; 10 3. Assuming an equivalent depth of K 18:7 mag we find that our errors are smaller but our results are consistent with existing clustering measurements in K-band surveys and with stable clustering models. We estimate our median redshift z ’ 0:75, and this allows us to obtain an estimate of the three-dimensional correlation function (r), for which we find r0 ¼ 4:4 0:1 h 1 Mpc
- …
