2,575 research outputs found

    Element Abundance Determination in Hot Evolved Stars

    Full text link
    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.Comment: To appear in: Recent Advances in Spectroscopy: Theoretical, Astrophysical, and Experimental Perspectives, Proceedings, Jan 28 - 31, 2009, Kodaikanal, India (Springer

    Phenomenological Consequences of sub-leading Terms in See-Saw Formulas

    Full text link
    Several aspects of next-to-leading (NLO) order corrections to see-saw formulas are discussed and phenomenologically relevant situations are identified. We generalize the formalism to calculate the NLO terms developed for the type I see-saw to variants like the inverse, double or linear see-saw, i.e., to cases in which more than two mass scales are present. In the standard type I case with very heavy fermion singlets the sub-leading terms are negligible. However, effects in the percent regime are possible when sub-matrices of the complete neutral fermion mass matrix obey a moderate hierarchy, e.g. weak scale and TeV scale. Examples are cancellations of large terms leading to small neutrino masses, or inverse see-saw scenarios. We furthermore identify situations in which no NLO corrections to certain observables arise, namely for mu-tau symmetry and cases with a vanishing neutrino mass. Finally, we emphasize that the unavoidable unitarity violation in see-saw scenarios with extra fermions can be calculated with the formalism in a straightforward manner.Comment: 22 pages, matches published versio

    Neutrino masses from new generations

    Get PDF
    We reconsider the possibility that Majorana masses for the three known neutrinos are generated radiatively by the presence of a fourth generation and one right-handed neutrino with Yukawa couplings and a Majorana mass term. We find that the observed light neutrino mass hierarchy is not compatible with low energy universality bounds in this minimal scenario, but all present data can be accommodated with five generations and two right-handed neutrinos. Within this framework, we explore the parameter space regions which are currently allowed and could lead to observable effects in neutrinoless double beta decay, μe\mu - e conversion in nuclei and μeγ\mu \rightarrow e \gamma experiments. We also discuss the detection prospects at LHC.Comment: 28 pages, 4 figures. Version to be published. Some typos corrected. Improved figures 3 and

    Non-standard interactions versus non-unitary lepton flavor mixing at a neutrino factory

    Full text link
    The impact of heavy mediators on neutrino oscillations is typically described by non-standard four-fermion interactions (NSIs) or non-unitarity (NU). We focus on leptonic dimension-six effective operators which do not produce charged lepton flavor violation. These operators lead to particular correlations among neutrino production, propagation, and detection non-standard effects. We point out that these NSIs and NU phenomenologically lead, in fact, to very similar effects for a neutrino factory, for completely different fundamental reasons. We discuss how the parameters and probabilities are related in this case, and compare the sensitivities. We demonstrate that the NSIs and NU can, in principle, be distinguished for large enough effects at the example of non-standard effects in the μ\mu-τ\tau-sector, which basically corresponds to differentiating between scalars and fermions as heavy mediators as leading order effect. However, we find that a near detector at superbeams could provide very synergistic information, since the correlation between source and matter NSIs is broken for hadronic neutrino production, while NU is a fundamental effect present at any experiment.Comment: 32 pages, 5 figures. Final version published in JHEP. v3: Typo in Eq. (27) correcte

    Flavoured soft leptogenesis and natural values of the B term

    Full text link
    We revisit flavour effects in soft leptogenesis relaxing the assumption of universality for the soft supersymmetry breaking terms. We find that with respect to the case in which the heavy sneutrinos decay with equal rates and equal CP asymmetries for all lepton flavours, hierarchical flavour configurations can enhance the efficiency by more than two orders of magnitude. This translates in more than three order of magnitude with respect to the one-flavour approximation. We verify that lepton flavour equilibration effects related to off-diagonal soft slepton masses are ineffective for damping these large enhancements. We show that soft leptogenesis can be successful for unusual values of the relevant parameters, allowing for BO(TeV)B\sim {\cal O}({\rm TeV}) and for values of the washout parameter up to meff/m5×103m_{\rm eff}/m_* \sim 5\times 10^{3}.Comment: 23 pages, 5 figures postscript, Minor changes to match the published version in JHE

    New physics searches at near detectors of neutrino oscillation experiments

    Full text link
    We systematically investigate the prospects of testing new physics with tau sensitive near detectors at neutrino oscillation facilities. For neutrino beams from pion decay, from the decay of radiative ions, as well as from the decays of muons in a storage ring at a neutrino factory, we discuss which effective operators can lead to new physics effects. Furthermore, we discuss the present bounds on such operators set by other experimental data currently available. For operators with two leptons and two quarks we present the first complete analysis including all relevant operators simultaneously and performing a Markov Chain Monte Carlo fit to the data. We find that these effects can induce tau neutrino appearance probabilities as large as O(10^{-4}), which are within reach of forthcoming experiments. We highlight to which kind of new physics a tau sensitive near detector would be most sensitive.Comment: 20 pages, 2 figures, REVTeX

    Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands

    Get PDF
    Haemonchus contortus appears to be the most economically important helminth parasite for small ruminant production in many regions of the world. The two sheep breeds native to the Canary Islands display distinctly different resistant phenotypes under both natural and experimental infections. Canaria Hair Breed (CHB) tends to have significantly lower worm burden and delayed and reduced egg production than the susceptible Canaria Sheep (CS). To understand molecular mechanisms underlying host resistance, we compared the abomasal mucosal transcriptome of the two breeds in response to Haemonchus infection using RNAseq technology. The transcript abundance of 711 and 50 genes were significantly impacted by infection in CHB and CS, respectively (false discovery rate <0.05) while 27 of these genes were significantly affected in both breeds. Likewise, 477 and 16 Gene Ontology (GO) terms were significantly enriched in CHB and CS, respectively (P < 1.0 × 10(−4)). A broad range of mechanisms have evolved in resistant CHB to provide protection against the parasite. Our findings suggest that readily inducible acute inflammatory responses, complement activation, accelerated cell proliferation and subsequent tissue repair, and immunity directed against parasite fecundity all contributed to the development of host resistance to parasitic infection in the resistant breed

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The dependence of dijet production on photon virtuality in ep collisions at HERA

    Get PDF
    The dependence of dijet production on the virtuality of the exchanged photon, Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 < 2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 38.6 pb^-1. Dijet cross sections were measured for jets with transverse energy E_T^jet > 7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon momentum entering the hard process, was used to enhance the sensitivity of the measurement to the photon structure. The Q^2 dependence of the ratio of low- to high-xg^obs events was measured. Next-to-leading-order QCD predictions were found to generally underestimate the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models based on leading-logarithmic parton-showers, using a partonic structure for the photon which falls smoothly with increasing Q^2, provide a qualitative description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
    corecore