9,947 research outputs found

    Non-reciprocal few-photon devices based on chiral waveguide-emitter couplings

    Full text link
    We demonstrate the possibility of designing efficient, non reciprocal few-photon devices by exploiting the chiral coupling between two waveguide modes and a single quantum emitter. We show how this system can induce non-reciprocal photon transport at the single-photon level and act as an optical diode. Afterwards, we also show how the same system shows a transistor-like behaviour for a two-photon input. The efficiency in both cases is shown to be large for feasible experimental implementations. Our results illustrate the potential of chiral waveguide-emitter couplings for applications in quantum circuitry.Comment: Mathematica notebook attached for calculation of detection probabilitie

    A chiral route to spontaneous entanglement generation

    Full text link
    We study the generation of spontaneous entanglement between two qubits chirally coupled to a waveguide. The maximum achievable concurrence is demonstrated to increase by a factor of 4/e1.54/e \sim 1.5 as compared to the non-chiral coupling situation. The proposed entanglement scheme is shown to be robust against variation of the qubit properties such as detuning and separation, which are critical in the non-chiral case. This result relaxes the restrictive requirements of the non-chiral situation, paving the way towards a realistic implementation. Our results demonstrate the potential of chiral waveguides for quantum entanglement protocols.Comment: 5 pages + 1 page supplemental, 4 figure

    Generation, manipulation, and detection of two-qubit entanglement in waveguide QED

    Full text link
    We study the possibility of using guided photons to generate, control, and measure the entanglement of two qubits that is mediated by a one-dimensional waveguide. We show how entanglement can be generated both with single photon and with two-photon wavepackets. The introduction of a second photon allows for a manipulation of the entanglement between the qubits, and phenomena such as sudden death and revival of entanglement appear. Finally, we propose a procedure for entanglement detection via the scattering output of a single-photon over a qubit state.Comment: 10 pages, 6 figure

    Tau anomalous magnetic moment form factor at Super B/Flavor factories

    Get PDF
    The proposed high-luminosity B/Flavor factories offer new opportunities for the improved determination of the fundamental physical parameters of standard heavy leptons. Compared to the electron or the muon case, the magnetic properties of the τ\tau lepton are largely unexplored. We show that the electromagnetic properties of the τ\tau, and in particular its magnetic form factor, may be measured competitively in these facilities, using unpolarized or polarized electron beams. Various observables of the τ\tau's produced on top of the Υ\Upsilon resonances, such as cross-section and normal polarization for unpolarized electrons or longitudinal and transverse asymmetries for polarized beams, can be combined in order to increase the sensitivity on the magnetic moment form factor. In the case of polarized electrons, we identify a special combination of transverse and longitudinal τ\tau polarizations able to disentangle this anomalous magnetic form factor from both the charge form factor and the interference with the Z-mediating amplitude. For an integrated luminosity of 15×1018b115 \times 10^{18} b^{-1} one could achieve a sensitivity of about 10610^{-6}, which is several orders of magnitude below any other existing high- or low-energy bound on the magnetic moment. Thus one may obtain a QED test of this fundamental quantity to a few % precision.Comment: 20 pages, 4 figure

    Neuro-fuzzy chip to handle complex tasks with analog performance

    Get PDF
    This paper presents a mixed-signal neuro-fuzzy controller chip which, in terms of power consumption, input–output delay, and precision, performs as a fully analog implementation. However, it has much larger complexity than its purely analog counterparts. This combination of performance and complexity is achieved through the use of a mixed-signal architecture consisting of a programmable analog core of reduced complexity, and a strategy, and the associated mixed-signal circuitry, to cover the whole input space through the dynamic programming of this core. Since errors and delays are proportional to the reduced number of fuzzy rules included in the analog core, they are much smaller than in the case where the whole rule set is implemented by analog circuitry. Also, the area and the power consumption of the new architecture are smaller than those of its purely analog counterparts simply because most rules are implemented through programming. The Paper presents a set of building blocks associated to this architecture, and gives results for an exemplary prototype. This prototype, called multiplexing fuzzy controller (MFCON), has been realized in a CMOS 0.7 um standard technology. It has two inputs, implements 64 rules, and features 500 ns of input to output delay with 16-mW of power consumption. Results from the chip in a control application with a dc motor are also provided

    A Modular Programmable CMOS Analog Fuzzy Controller Chip

    Get PDF
    We present a highly modular fuzzy inference analog CMOS chip architecture with on-chip digital programmability. This chip consists of the interconnection of parameterized instances of two different kind of blocks, namely label blocks and rule blocks. The architecture realizes a lattice partition of the universe of discourse, which at the hardware level means that the fuzzy labels associated to every input (realized by the label blocks) are shared among the rule blocks. This reduces the area and power consumption and is the key point for chip modularity. The proposed architecture is demonstrated through a 16-rule two input CMOS 1-μm prototype which features an operation speed of 2.5 Mflips (2.5×10^6 fuzzy inferences per second) with 8.6 mW power consumption. Core area occupation of this prototype is of only 1.6 mm 2 including the digital control and memory circuitry used for programmability. Because of the architecture modularity the number of inputs and rules can be increased with any hardly design effort.This work was supported in part by the Spanish C.I.C.Y.T under Contract TIC96-1392-C02- 02 (SIVA)

    Material auxiliar de clase de dispositivos electrónicos

    Get PDF
    El presente volumen recoge el material auxiliar de clase utilizado por los autores en el desarrollo de la asignatura Dispositivos Electrónicos que imparten en la E.T.S. de Ingeniería Informática de la Universidad de Málaga, y que forma parte de las materias que se estudian en el primer curso de las diferentes titulaciones de Informática: Ingeniero en Informática, Ingeniero Técnico en Informática de Sistemas e Ingeniero Técnico en Informática de Gestión. Junto a las transparencias que sirven de soporte a las explicaciones y desarrollo del temario en las clases, se ofrece también al alumno un breve resumen de los conceptos más destacados en cada una de ellas a modo de guión y como base del trabajo de estudio que el alumno ha de desarrollar y completar con la ayuda de la bibliografía recomendada. Se completa el contenido de este trabajo con un cuestionario y una relación de problemas propuestos junto con sus soluciones, para cada uno de los temas
    corecore